
Hierarchical Reward Design from Language: Enhancing
Alignment of Agent Behavior with Human Specifications

Zhiqin Qian

Rice University

Houston, USA

bill.qian@rice.edu

Ryan Diaz

Rice University

Houston, USA

ryandiaz@rice.edu

Sangwon Seo

Rice University

Houston, USA

sangwon.seo@rice.edu

Vaibhav Unhelkar

Rice University

Houston, USA

vaibhav.unhelkar@rice.edu

ABSTRACT
When training AI agents to perform tasks, humans often care not

only about whether a task is completed but also how it is performed.

As agents tackle increasingly complex tasks, aligning their behavior

with human-provided specifications becomes critical for responsi-

ble AI deployment. Reward design provides a direct channel for such
alignment by translating human expectations into reward functions

that guide reinforcement learning (RL). However, existing methods

are often too limited to capture nuanced human preferences that

arise in long-horizon tasks. Hence, we introduce Hierarchical
Reward Design for Language (HRDL): a problem formulation

that extends classical reward design to encode richer behavioral

specifications for Hierarchical RL agents. We further propose Lan-
guage to Hierarchical Rewards (L2HR), our proposed solution

to HRDL. Human subject and numerical experiments show that

Hierarchical RL agents trained with rewards designed via L2HR

not only complete tasks effectively but also better adhere to human

specifications. Together, HRD and L2HR advance the research on

human-aligned AI agents.

KEYWORDS
Reward Design, Human-Centered AI, Hierarchical RL

ACM Reference Format:
Zhiqin Qian, Ryan Diaz, Sangwon Seo, and Vaibhav Unhelkar. 2026. Hier-

archical Reward Design from Language: Enhancing Alignment of Agent

Behavior with Human Specifications. In Proc. of the 25th International Confer-
ence on Autonomous Agents and Multiagent Systems (AAMAS 2026), Paphos,
Cyprus, May 25 – 29, 2026, IFAAMAS, 35 pages.

1 Introduction
AI agents are being deployed in human-centric environments such

as homes, hospitals, and disaster zones [19, 29, 49, 56, 66]. Their

usefulness depends not only on accomplishing tasks, but on doing

so in ways that respect human intentions, operational rules, and

safety requirements (henceforth collectively referred to as behavior
specifications). Aligning agent behavior with these specifications is

central to safe and responsible AI deployment. Prior research has

Proc. of the 25th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2026), C. Amato, L. Dennis, V. Mascardi, J. Thangarajah (eds.), May 25 – 29,
2026, Paphos, Cyprus. © 2026 International Foundation for Autonomous Agents and

Multiagent Systems (www.ifaamas.org). This work is licenced under the Creative

Commons Attribution 4.0 International (CC-BY 4.0) licence.

explored a range of approaches for conveying such specifications

to agents [12]. In this work, we focus on the paradigm of reward
design, which provides a direct way for humans to convey such

specifications by translating them into reward signals that guide

reinforcement learning (RL).

As AI agents take on increasingly complex, long-horizon tasks,

more advanced reward designmethods are needed to capture equally

complex specifications. Humans rarely teach or think about tasks

and associated specifications as monolithic goals [9, 10, 13, 30, 41,

53]. Instead, we naturally break them into subtasks: “first prepare

the ingredients, then cook, then serve.” Hierarchical frameworks in

RL mirror this structure by decomposing tasks into subtasks and

organizing them over long horizons [14, 15, 50, 64].

Research Gap. This hierarchical approach to policy learning has

enabled agents to complete tasks of increasingly longer horizons.

However, the reward design for these hierarchical RL agents remains
largely unexplored, thereby limiting alignment of agent behavior

with human specifications in long-horizon tasks. As illustrated in

Fig. 1, specifications for long-horizon tasks often include details on

what subtasks to perform, in which order, and how they are exe-

cuted. Existing reward design methods encode these specifications

via a flat reward function of the form 𝑟 𝑓 𝑙𝑎𝑡 (𝑠, 𝑎). We show both
theoretically and empirically that flat rewards are fundamentally
limited in capturing specifications for long-horizon tasks.

Summary of Contributions. To address this limitation,

• We introduce the Hierarchical Reward Design (HRD) problem,

which enables designers to express behavioral specifications in-

spired by the same structured way people naturally think and

teach. Unlike the classical (flat) reward design problem [57], HRD

admits reward solutions that enables encoding of complex speci-

fications for long-horizon tasks, capturing both what subtasks to

perform and how to execute them. HRD is a general formulation

that can be instantiated withmultiple input modalities, analogous

to how flat reward design has been realized via proxy signals or

language [20, 34, 39]. Because natural language is an intuitive

medium for specifying layered instructions, we then provide a

language-based instantiation called Hierarchical Reward Design
from Language (HRDL, pronounced “hurdle”).
• We prove that hierarchical rewards of HRDL are strictly more

expressive than flat rewards used by prior works, while remain-

ing compatible with standard decision-making frameworks (i.e.

(Flat) Reward Design

Hierarchical

Reward Design

1

2

Human-Provided

Specifications

Reward Design

Algorithm
Reinforcement

Learning
ǁ𝑟𝐿 𝑠𝑡 , 𝑜𝑡 , 𝑎𝑡 = ⋯

ǁ𝑟𝐻 𝑜𝑡−1, 𝑠𝑡 , 𝑜𝑡 = ⋯

ǁ𝑟𝑓𝑙𝑎𝑡 𝑠𝑡 , 𝑎𝑡 = ⋯

Avoid yellow danger

zones when delivering an

object …

Group objects of the

same type …

Designed

Reward Functions

Agent’s

Learned Behavior

Collect and deliver all

items to the …

Figure 1: This work introduces the Hierarchical Reward Design from Language (HRDL) problem. Unlike prior work on reward
design, HRDL decomposes reward design into low- and high-level components (𝑟𝐿, 𝑟𝐻). Language to Hierarchical Rewards
(L2HR), our proposed solution to HRDL, leverages language models to guide the synthesis of these hierarchical rewards,
enabling existing RL algorithms to train agents that are better aligned with human specifications.

Markov and semi-Markov Decision Processes) and reinforcement

learning algorithms.

• We present Language toHierarchical Rewards (L2HR), an ini-
tial solution to HRDL that generates hierarchical rewards directly

from natural language specifications, making reward designmore

accessible while leveraging the reasoning capabilities of large lan-

guage models [2, 24, 37]. L2HR produces reward structures that

guide both high-level subtask selection and low-level execution.

Through human subject and numerical experiments, we demon-

strate the advantages of hierarchical over flat reward design. We

show that hierarchical reward design (coupled with hierarchical

RL) allows AI agents to not only successfully complete tasks but

also better align their behavior with language specifications. We

view this work as an initial but important step toward aligning

AI systems with human expectations through the lens of HRD.

Through theoretical analysis and empirical findings, this paper lays

the groundwork for future research on designing human-aligned

reward structures that employ hierarchies and human input.

2 Background and Related Work
We focus on AI agents tasked with problems that can be modeled

as Markov Decision Processes (MDPs) [52], defined by the tuple

M = (S,A,𝑇 , 𝑟, 𝛾, ℎ). Here, S and A denote the state and action

spaces,𝑇 (𝑠′ |𝑠, 𝑎) the transition dynamics, and 𝑟 (𝑠, 𝑎) the immediate

reward. The discount factor 𝛾 ∈ [0, 1] trades off immediate and

future rewards, and ℎ is the horizon. The objective of reinforce-

ment learning (RL) is to find a policy 𝜋 (𝑎 |𝑠) that maximizes the

expected discounted return E𝑠𝑡∼𝑇,𝑎𝑡∼𝜋 [
∑ℎ

𝑡=0 𝛾
𝑡𝑟 (𝑠𝑡 , 𝑎𝑡)]. MDPs pro-

vide a flexible framework for modeling a wide range of sequential

tasks, including those tackled by virtual agents and robotic assis-

tants. MDPs can be solved using reinforcement learning, which

provides an approach to computing the optimal policy that maxi-

mizes the expected cumulative discounted reward [63].

2.1 Hierarchical Reinforcement Learning
While capable, RL algorithms find it challenging to solve long-

horizon tasks. Hierarchical RL (HRL) seeks to solve MDPs with long

horizons by decomposing them into simpler subtasks [14, 15, 50, 64].

A widely adopted HRL paradigm is the options framework [5, 64, 71],

where the agent has access to a discrete set of temporally-extended

behaviors called options, denoted as O. Each option 𝑜 ∈ O corre-

sponds to an intra-option policy given by 𝜋𝐿 (𝑎 |𝑠, 𝑜) and a termi-

nation condition 𝛽 (𝑠, 𝑜−). A high-level policy 𝜋𝐻 (𝑜 |𝑜−, 𝑠) selects
which option to execute, and the corresponding low-level policy

𝜋𝐿 generates primitive actions until the selected option terminates.

The reward model for options computes the expected cumulative

reward until an option terminates. Following [64], we let E(𝑜, 𝑠, 𝑡)
denote the event where option 𝑜 is initiated in state 𝑠 at timestep 𝑡 ,

and define the option-level reward as:

𝑟𝑜𝑝𝑡 (𝑠, 𝑜) � E[Σ𝑘𝑖=1𝛾𝑖−1𝑟𝑡+𝑖 | E(𝑜, 𝑠, 𝑡)] (1)

where 𝑘 is the random variable denoting number of steps after

which the initiated option 𝑜 terminates, determined by its termina-

tion condition 𝛽 .

Another line of HRL research follows the feudal/goal-conditioned
framework [14, 27, 33, 43, 65], which also decomposes a task into

subtasks but differs in how the hierarchical policies are trained

and how reward signals are assigned. In this framework, the high-

level manager selects subgoals and receives a task reward, as in the

options framework. However, unlike the options framework, the

low-level worker receives a separate pseudo-reward 𝑟𝑝 (𝑠, 𝑜, 𝑎) that
measures progress toward achieving the current subgoal.

2.2 Reward Design
A core challenge in using MDPs and RL is reward design [57, 63].

Given a well-designed reward function, agents can use RL/HRL

algorithms to solve the MDP. However, in practice, the design of a

reward function is non-trivial and can lead to a host of problems,

including poor alignment between humans and agents [4].

2.2.1 Reward Design Problem. To formally study reward design,

Singh et al. introduce the (flat) Reward Design Problem (RDP) [57].

RDP is formalized as a tuple 𝑃 = (M𝑝 ,R,AM𝑝
, 𝐹), where

• M𝑝 = (S,A,𝑇 ,𝛾, ℎ) is the world model;
• R is the space of reward functions;

• AM𝑝
(𝑟) : R → Π is an algorithm to compute policy 𝜋 : S →

Δ(A) that optimizes reward 𝑟 ∈ R in the MDP (M𝑝 , 𝑟);
• 𝐹 : Π → R is the fitness function that produces a scalar evalua-

tion of a policy, only accessible via policy queries.

Figure 2: Although prior works have utilized multi-level re-
wards to train hierarchical agents, the design of such rewards
remains underexplored and lacks a concrete problem formu-
lation. This work seeks to bridge this gap.

In an RDP, the goal is to output a reward function 𝑟 ∈ R such

that the policy 𝜋 :=AM𝑝
(𝑟) that optimizes 𝑟 achieves the highest

Fitness score 𝐹 (𝜋).
Rather than treating the reward as fixed and exogenous, RDP

reframes reward design as a search problem, a perspective that has

profoundly shaped subsequent research. It inspired methods that

optimize or evolve reward functions directly [46, 60] as well as

formulations that infer or generate them from indirect signals, such

as Inverse Reward Design [20], which recovers true rewards from

proxy rewards, and Eureka [39], which synthesizes executable re-

wards from natural language. Many other paradigms can be viewed

as RDP instantiations: inverse reinforcement learning [1, 17, 22, 72]

treats expert behavior as evidence for the reward search, while

preference-based learning [7, 54] and RLHF [6, 48] extend this to

human feedback.

2.2.2 Rewards Design for Hierarchical RL. Collectively, RDP pro-

vides a unifying framework that has catalyzed advances in both

reinforcement learning and human-AI alignment; however, it does

not explicitly consider hierarchical RL. Many prior works have ex-

plored the use of hierarchical rewards, from early studies in feudal

reinforcement learning [14] and precursors to the options frame-

work [59] to more recent advances in deep HRL [33, 43, 65]. While

these works often assume access to hierarchical rewards for train-

ing agents to complete tasks, the problem of designing such
hierarchical rewards has received little attention and, to our
knowledge, has yet to be formally defined as a concrete re-
search problem.

A literature search using the keywords “hierarchical reward de-

sign” primarily returns domain-specific studies that discuss how

using hierarchical rewards enables solving application-level prob-

lems, such as fleet management [11, 25, 44, 45]. Other works either

employ the term “hierarchy” in different contexts (for example,

to express the relative importance of multiple reward signals [36]

or sequential action constraints without explicitly modeling sub-

tasks [28]) or focus on narrower scopes, such as learning hierarchi-

cal rewards specifically from demonstrations [62].

Since no previous work formally defines hierarchical reward de-

sign as a general problem, there is a lack of consistent language and

theoretical foundation for studying it, unlike the well-established

Reward Design Problem [57]. This work addresses this gap by

formalizing the Hierarchical Reward Design (HRD) problem and

introducing a reward structure that is hierarchical, compact, and

capable of capturing nuanced behavioral specifications for both

what subtasks to select and how to execute them.

Just as RDP lays the groundwork for studying algorithmic reward
design in flat settings, we posit that HRD will provide a principled
foundation for reasoning about hierarchical reward structures. In
line with the research that originated from RDP, we anticipate that

HRD will enable a broad range of problem instantiations (of reward

design with different types of human inputs) and solution methods

for designing hierarchical rewards. A Venn diagram illustrating

how this work relates to prior research on hierarchical rewards and

reward design is shown in Figure 2.

2.2.3 Reward Design from Language. Early work addressing the

RDP focused on designing rewards for intrinsic motivation and

reward shaping [58, 60, 61]. More recently, research in this area

has explored aligning agent behavior more closely with human-

provided specifications, using learning or large language models

(LLMs) to infer and generate reward functions [20, 34]. In these

cases, the human or an oracle, either implicitly or explicitly, serves

as the fitness function by evaluating the policy. However, most

existing work on reward design or generation focuses exclusively

on non-hierarchical (flat) RL settings, producing reward functions of

the form 𝑟 𝑓 𝑙𝑎𝑡 (𝑠, 𝑎) or 𝑟 𝑓 𝑙𝑎𝑡 (𝑠) [8, 16, 20, 21, 34, 35, 39, 58, 60, 61, 68,
69]. While sufficient for certain behaviors, flat reward functions are
fundamentally limited when specifying complex preferences, such as
desired subtask sequences or option-conditioned execution strategies,
that naturally arise in long-horizon tasks.

To our knowledge, the only prior work that explicitly considers

a hierarchical setting is [40], though its focus differs substantially

from ours. Their approach does not formalize the hierarchical re-

ward design problem or analyze the expressivity gap between flat

and hierarchical formulations. Moreover, the rewards generated

by their LLMs are limited to task completion objectives and do

not capture behavioral specifications. In contrast, L2HR generates

both high- and low-level rewards that encode natural language

behavioral preferences while preserving task feasibility.
1

3 Hierarchical Reward Design
This section formally introduces the Hierarchical Reward Design

(HRD) problem in the context of HRL, drawing insights from both

the options framework and the feudal framework. We begin by

defining the low- and high-level reward functions in HRD and

proceed to show that they naturally induce a family of MDPs at the

low-level and a semi-MDP (SMDP) at the high-level. Using these

insights, we formally define the general HRD problem and introduce

a specific instantiation, the Hierarchical Reward Generation from
Language (HRDL) problem, which we address in this paper. Proofs

and additional details for all propositions are provided in Appendix

Sec. B.1.

1
Please see the Sec. A in the Appendix for a further discussion of related works.

3.1 Low-level and High-level Reward Models
Definition 1 (Low-level Reward). The low-level reward is a

function 𝑟𝐿 : S × O × A → R, which provides feedback for selecting
a low-level action 𝑎 ∈ A in state 𝑠 ∈ S while pursuing option 𝑜 ∈ O.

Intuitively, 𝑟𝐿 (𝑠, 𝑜, 𝑎) encodes specifications for how the agent

should execute the subtask associated with option 𝑜 in state 𝑠 .

Proposition 1 (Low-levelMDPModels). LetM𝑝 = (S,A,𝑇 ,𝛾)
be a world model, O a set of options, and 𝑟𝐿 : S × O × A → R
a low-level reward. For a fixed option 𝑜 ∈ O, the tuple M𝐿,𝑜 =

(S,A,𝑇 , 𝑟𝐿 (·, 𝑜, ·), 𝛾, ℎ𝑜) defines an MDP, where ℎ𝑜 is the horizon
determined by the option’s termination condition 𝛽 (·, 𝑜).

Definition 2 (High-level Reward). The high-level reward is
a function 𝑟𝐻 : O × S × O → R, which specifies the expected reward
for executing option 𝑜 ∈ O until termination, given that 𝑜 is initiated
in state 𝑠 ∈ S and the previous option was 𝑜− ∈ O.

The high-level reward 𝑟𝐻 (𝑜−, 𝑠, 𝑜) encodes specifications for

what subtask should be executed, possibly conditioned on both

the current state and prior option. This allows for expressing pref-

erences over subtask ordering and dependencies between subtasks.

Proposition 2 (High-level SMDP Model).

LetM𝑝 = (S,A,𝑇 ,𝛾, ℎ) be a world model, O a set of options, and
𝑟𝐻 : O × S × O → R the high-level reward. Then,M𝐻 = (O ×
S,O,𝑇𝐻 , 𝑟𝐻 , 𝛾, ℎ) forms a semi-MDP, where 𝑇𝐻 : O × S × O →
Δ(O × S × N) defines the joint distribution over the next augmented
state and transit time, where N is the set of natural numbers.

Alternatively, the high-level process can be modeled as a stan-

dard MDP when single-step high-level rewards are used. This flexi-

bility highlights that the HRD framework is compatible with both

semi-MDP and MDP formulations, allowing the use of a wide range

of existing RL algorithms. We provide the formal MDP definition

and corresponding proof in Sec. B.1 in the Appendix.

3.2 The HRD Problem
Definition 3 (Hierarchical Reward Design (HRD)). The Hi-

erarchical Reward Design (HRD) problem is defined by the tuple
𝑃 = (M𝑝 ,O,R,AM𝑝

, 𝐹), where
• M𝑝 = (S,A,𝑇 ,𝛾, ℎ) is the world model;
• O is a finite option set;
• R = R𝐻 × R𝐿 is the space of candidate reward structures, where
R𝐻 = {𝑟𝐻 : O × S × O → R} and R𝐿 = {𝑟𝐿 : S × O × A → R};
• the learning routine AM𝑝

(·) : R → Π𝐻 × Π𝐿 maps each reward
pair (𝑟𝐻 , 𝑟𝐿) to a hierarchical policy (𝜋𝐻 , 𝜋𝐿), where 𝜋𝐻 : O×S →
Δ(O) optimizes 𝑟𝐻 in the high-level decision making modelM𝐻

and 𝜋𝐿 : S × O → Δ(A) optimizes 𝑟𝐿 in each underlying MDP
M𝐿,𝑜 ; and
• the fitness function 𝐹 : Π𝐻 × Π𝐿 → R evaluates the quality of
hierarchical policies.

The goal of HRD is to find (𝑟 ∗
𝐻
, 𝑟 ∗

𝐿
) = argmax(𝑟𝐻 ,𝑟𝐿) ∈R 𝐹 (AM𝑝

(𝑟𝐻 , 𝑟𝐿)).

Connections to Existing Algorithms. We show in Sec. B.2 that AM𝑝

can be instantiated with existing RL algorithms. In our implementa-

tion, the low-level policy 𝜋𝐿 (𝑎 | 𝑠, 𝑜) is trained with PPO [55] due to

its robustness in control, while the high-level policy 𝜋𝐻 (𝑜 | 𝑜−, 𝑠)
uses DQN-style methods [42], following common practice in SMDP

formulations [5, 64]. Stronger structural assumptions on (𝑟𝐻 , 𝑟𝐿)
can enable the use of more specialized HRL algorithms. For in-

stance, if the low-level reward depends only on state and action,

𝑟𝐿 (𝑠, 𝑜, 𝑎) = 𝑟 𝑓 𝑙𝑎𝑡 (𝑠, 𝑎), and the high-level reward 𝑟𝐻 is a single-step

reward constructed as

∑
𝑎 𝑟 𝑓 𝑙𝑎𝑡 (𝑠, 𝑎)𝜋𝐿 (𝑎 |𝑠, 𝑜), the problem reduces

to the two augmented MDPs formulation introduced in [71]. In

these cases, algorithms such as double actor-critic [71] and option-

critic [5] can be applied to learn hierarchical policies. A detailed

exploration of the connections between structural reward assump-

tions and the applicability of existing HRL algorithms for instanti-

ating AM𝑝
is left for future work.

3.3 Hierarchical Reward Design from Language
As discussed in Sec. 1, real-world deployments often require agents

to satisfy additional behavioral specifications beyond task com-

pletion. In these cases, the task reward can typically be defined

once and reused across different behavioral contexts. In contrast,

additional rewards must be redesigned for each new behavior spec-

ification. While the cost of task reward design is amortized, the cost

of designing rewards that match human specifications grows lin-

early with the number of distinct behaviors desired. This motivates

the need for an automated approach to generate rewards to encode

behavioral specifications while reusing the existing domain dynam-

ics and task objectives. The challenge of this problem is twofold:

(1) The generated rewards should have distinct functional forms

– one guiding high-level option selection, and another governing

low-level action execution. (2) The generated rewards must remain

compatible with existing task rewards, ensuring that agents con-

tinue to achieve the original task objectives. We formally define

this as a specific instantiation of the HRD problem.

Definition 4 (Hierarchical Reward Design from Language

(HRDL)). TheHRDL problem is an instance of the HRD problem with
additional inputs: (1) a task reward function 𝑟 : S×A → R, (2) a sub-
task completion reward (pseudo-reward) 𝑟𝑝 : S×O×A → R, and (3)
behavior specifications 𝑙 ∈ Σ∗, provided as a natural language descrip-
tion. 𝑙 guides the reward generation during training, and the fitness
function 𝐹 is accessible only during evaluation. The objective of HRDL
is to generate high- and low-level designed rewards,𝑅∗ = (𝑟 ∗

𝐻
, 𝑟 ∗

𝐿
) ∈ R,

such that the resulting hierarchical policy (𝜋∗
𝐻
, 𝜋∗

𝐿
), trained under the

composite rewards (𝑟𝑜𝑝𝑡 + 𝑟 ∗𝐻 , 𝑟𝑝 + 𝑟 ∗𝐿) using AM𝑝
, maximizes the

fitness score: (𝑟 ∗
𝐻
, 𝑟 ∗

𝐿
) = argmax(𝑟𝐻 ,𝑟𝐿) ∈R 𝐹 (AM𝑝

(𝑟𝑜𝑝𝑡+𝑟𝐻 , 𝑟𝑝+𝑟𝐿)).
If a non-hierarchical reward design method is used, the designed

reward has the flat form 𝑟 𝑓 𝑙𝑎𝑡 (𝑠, 𝑎). To integrate this flat reward

into the hierarchical setting, we must decompose it into high- and

low-level rewards:

𝑟𝐿 (𝑠, 𝑜, 𝑎) = 𝑟𝑝 (𝑠, 𝑜, 𝑎) + 𝑟 𝑓 𝑙𝑎𝑡 (𝑠, 𝑎) (2)

𝑟𝐻 (𝑠, 𝑜) = 𝑟𝑜𝑝𝑡 (𝑠, 𝑜) + 𝑟 𝑓 𝑙𝑎𝑡,𝐻 (𝑠, 𝑜) (3)

where 𝑟 𝑓 𝑙𝑎𝑡,𝐻 (𝑠, 𝑜) aggregates 𝑟 𝑓 𝑙𝑎𝑡 (𝑠, 𝑎) using the same expression

as Eq. 1. While flat designed rewards 𝑟 𝑓 𝑙𝑎𝑡 (𝑠, 𝑎) can encode some

behavior specifications, the definitions of high- and low-level re-

wards in HRD provide a significantly more expressive mechanism

for specifying agent behavior:

𝑟𝐿 (𝑠, 𝑜, 𝑎) = 𝑟𝑝 (𝑠, 𝑜, 𝑎) + 𝑟𝐿 (𝑠, 𝑜, 𝑎) (4)

𝑟𝐻 (𝑜−, 𝑠, 𝑜) = 𝑟𝑜𝑝𝑡 (𝑠, 𝑜) + 𝑟𝐻 (𝑜−, 𝑠, 𝑜) (5)

In fact, the flat reward is a special case of hierarchically designed re-

wards, where 𝑟𝐿 (𝑠, 𝑜, 𝑎) = 𝑟 𝑓 𝑙𝑎𝑡 (𝑠, 𝑎) and 𝑟𝐻 (𝑜−, 𝑠, 𝑜) = 𝑟 𝑓 𝑙𝑎𝑡,𝐻 (𝑠, 𝑜).
The hierarchical formulation is strictly more general than the flat

formulation, offering greater expressiveness in the following ways:

Property 1. Certain specifications on sub-task selection can be
expressed through 𝑟𝐻 (𝑠, 𝑜−, 𝑜), but they cannot be expressed by flat
function: 𝑟 𝑓 𝑙𝑎𝑡 (𝑠, 𝑎).

Property 2. Certain specifications on sub-task execution can be
expressed through 𝑟𝐿 (𝑠, 𝑜, 𝑎), but they cannot be expressed by flat
function: 𝑟 𝑓 𝑙𝑎𝑡 (𝑠, 𝑎).

Proofs of these properties are provided in Appendix Sec. B.3. In

the following sections, we introduce an algorithm for generating

hierarchical rewards (𝑟𝐻 , 𝑟𝐿) from natural language specifications

and empirically compare its performance against flat reward design

that generates alignment rewards of the form 𝑟 𝑓 𝑙𝑎𝑡 (𝑠, 𝑎).

4 Language to Hierarchical Rewards (L2HR)
We now present L2HR, an algorithm to solve HRDL that uses large

language models (LLMs) to generate reward functions directly from

natural language specifications. An illustration of L2HR’s input and

output is provided in Fig. 3.

4.1 LLM Prompting Strategy
To generate executable reward functions from natural language

specifications, we design a prompting strategy inspired by recent

works on code generation for reward design [39]. Unlike [39], our

prompting design is tailored for generating feasible reward func-

tions without relying on using fitness 𝐹 to evaluate and iteratively

improve polices during training. More specifically, the LLM is pro-

vided with a structured prompt consisting of the following compo-

nents:

(1) Task Description: A natural language summary of the overall

task objective, including the approximate scale of the task re-

ward. The actual task reward code is intentionally withheld

– both to reflect realistic scenarios in which only the reward

signal (but not the code) is accessible and to prevent the LLM

from overfitting to specific implementation details.

(2) Environment Code Context: Extracted snippets of environment

source code that expose the state and action spaces without

leaking simulation internals. This follows the methodology

proposed in [39].

(3) Relevant Action-Related Spaces: Descriptions of the option space

O and action space A, including the semantic role of each. We

include these descriptions to help the LLM correctly distinguish

between high-level and low-level decision spaces.

(4) Behavior Specification: A natural language string that describes

the desired agent behaviors beyond task completion.

(5) Formatting and Reward Design Tips: Brief coding guidelines,

such as avoiding defining new global variables, and recommen-

dations for balancing designed rewards with the underlying

task reward.

4.2 Training Procedure
While LLMs can generate plausible reward code in a zero-shot

manner, code generation is inherently noisy: syntax errors, invalid

variable references, and runtime failures may occur. To address this

variability, we sample 𝑘 reward candidates independently from the

LLM and apply a lightweight filtering process to ensure validity.

During filtering, we verify whether the code compiles without syn-

tax errors, and whether it references only permitted state, option,

and action variables exposed in the environment prompt. We find

that in practice, at least one sample in the batch passes these checks

and preserves task feasibility. As a result, we forego more complex

iterative refinement strategies, such as evolutionary search or “re-

ward reflection” [39], which would be challenging without fitness 𝐹

during training. However, we recognize this as an important future

direction; methods that incorporate feedback could further improve

the robustness of generated reward functions.

The full two-stage training algorithm L2HR is provided in Sec. C

of the Appendix. In the first stage, we use the LLM to generate

𝑘 candidate low-level alignment functions 𝑟
(1)
𝐿

, . . . , 𝑟
(𝑘)
𝐿

from the

specification 𝑙 . The low-level prompt differs from the high-level one

only in its description of the action space and level-specific behavior

specifications. Each 𝑟
(𝑖)
𝐿

is then used to train a corresponding low-

level policy 𝜋
(𝑖)
𝐿

with the combined objective of pseudo-rewards

plus the LLM-generated 𝑟
(𝑖)
𝐿

. Only the policies 𝜋
(𝑖)
𝐿

that surpass a

predefined threshold of subgoal completion, based on cumulative

pseudo-rewards, are considered as valid.
In the second stage, we generate 𝑘 candidate high-level align-

ment functions 𝑟
(1)
𝐻

, . . . , 𝑟
(𝑘)
𝐻

and use them to train high-level poli-

cies 𝜋
(𝑗)
𝐻

, each conditioned on a valid 𝜋 (𝑖)
𝐿

from the first stage. These

policies are optimized using with the combined objective of option-

level task reward plus the LLM-generated 𝑟
(𝑗)
𝐻

. Then, we return all

designed rewards (𝑟 (𝑗)
𝐻

, 𝑟
(𝑖)
𝐿
) and corresponding trained policy pairs

(𝜋 (𝑗)
𝐻

, 𝜋
(𝑖)
𝐿
) that achieve cumulative task rewards above a thresh-

old. This two-stage structure promotes modularity and allows for

selective reuse of subtask policies.

5 Experiments
We empirically evaluate whether framing reward generation as

a hierarchical problem offers advantages over the traditional flat

(non-hierarchical) formulation. Specifically, we aim to evaluate:

Q1. Are the generated alignment rewards syntactically correct?

Q2. Do they preserve task feasibility?

Q3. Do they successfully induce behaviors that match the provided

specifications?

To investigate Q3, we additionally conduct user studies. Further

experimental details are provided in Sec. D of the Appenfix.

5.1 Baselines
To evaluate L2HR (referred to as Hier in the tables), we consider the

following baselines. For all LLM-based experiments, we generate

𝑘 = 8 reward function candidates per trial and repeat this process 3

times, resulting in a total of 24 reward candidates per configuration.

5.1.1 Language to Flat Reward (Flat). We generate flat alignment

reward 𝑟 𝑓 𝑙𝑎𝑡 (𝑠, 𝑎) from language and incorporate this function into

the hierarchical setting using Eq. 4 and 5 to maintain a consis-

tent two-level training framework. Prompts are identical to those

used for L2HR, except that the prompts for flat reward generation

Task description: The objective is to pick up all apples and eggs on the

dining table and place them in the sink...

Environment context:
'''
Background: PnP_LL_Actions = [...], PnP_HL_Actions = [...] ...
'''
class ThorPickPlaceEnv(gym.Env):

def __init__(...): ...

Relevant task spaces: The agent’s option/subtask space consists of picking
up and placing the two types of objects...

Low-level user preference: The agent should avoid the stool while on its

way to pick up or drop an egg...

High-level user preference: The agent should pick up an object type that

is different from what was previously picked...

Additional info: Do not use function attributes or global variables...

(a) Natural Language Specifications

High-level preference reward
def get_high_level_pref_gpt(state: Dict, prev_option: int, option: int) ->

Tuple[float, Dict[str, float]]:
...
return reward, reward_components

Low-level preference reward
def get_low_level_pref_gpt(state: Dict, option: int, action: int) ->

Tuple[float, Dict[str, float]]:
...
return reward, reward_components

(b) Reward Functions designed by L2HR

Figure 3: Illustration of L2HR input and output. SeeAppendix
Sec. D.5 for more details.

(a) iTHOR Domain (b) Kitchen Domain

Figure 4: Rendered scenes from the iTHOR and Kitchen do-
mains. Fig. 1 (right) illustrates the Rescue World domain.

exclude option-related instructions (since flat rewards are indepen-

dent of options) and express user preferences as a single combined

description rather than separate high- and low-level specifications.

5.1.2 No Reward Design (Task). This baseline does not utilize LLMs

and uses only the task reward 𝑟 and pseudo-reward 𝑟𝑝 without

incorporating any behavioral specifications (i.e., 𝑟𝐻 = 𝑟𝐿 = 0). As

this setting is less noisy, we run it for 5 trials.

5.2 Domains
We evaluate the approaches on three long-horizon, multi-subtask

domains: Rescue World, iTHOR, and Kitchen. Each domain poses

distinct challenges in subtask sequencing and low-level execution.

Furthermore, as we see later, flat rewards cannot in principle capture

all specifications in Rescue World and iTHOR, whereas they can

in Kitchen. This contrast allows us to investigate, in practice, how
effectively language specifications can be translated into flat and

hierarchical rewards across both types of scenarios. Additional

details are provided in Sec. D.1, Sec. D.4, and Fig. 8.

5.2.1 Rescue World. A variant of the Rescue World for Teams

(RW4T) domain [47], where the agent must collect and deliver all

supplies in the environment. This domain features a large state

space represented by a 407-dimensional vector and poses a long-

horizon challenge, requiring the agent to complete 8 subtasks, each

lasting up to around 10 steps. Behavioral specifications include:

(1) a high-level persistence specification for delivering all supplies

of one type before switching to another and (2) a low-level safety
specification for avoiding hazardous zones while carrying supplies.

5.2.2 iTHOR. Built upon the Unity game engine, iTHOR is an envi-

ronment within the AI2-THOR [32] framework that features several

realistic household scenes in which an agent can navigate and in-

teract with everyday objects. Here, we focus on a long-horizon pick

and place task within a kitchen setting consisting of 8 subtasks,

each requiring up to approximately 30 steps to complete. The agent

must deliver a set of apples and eggs located on the dining table

to the sink on the other side of the room. The state space is repre-

sented by a 30-dimensional vector that contains object and agent

positions and object states. Behavioral specifications include: (1) a

high-level diversity specification that requires delivering a different

item from the one previously delivered and (2) a low-level avoidance
specification that prevents the agent from going near a stool placed

in the environment while picking up or delivering an egg.

5.2.3 Kitchen. A single-agent variant of Overcooked, a benchmark

environment originally developed for studying human-AI collabo-

ration in kitchen tasks [38, 67]. In our setting, the agent needs to

prepare a salad with lettuce, tomatoes, and onions. This domain fea-

tures an even larger state space, represented by a 699-dimensional

continuous vector that captures various ingredient states. It also

involves a long-horizon task requiring the completion of 5 subtasks

in a strict sequence, with the final 2 subtasks dependent on the

successful completion of all preceding ones. The high-level behav-

ioral specification is a preferred chopping sequence (e.g., tomatoes

→ onions→ lettuce). Since the environment uses fixed low-level

policies, we skip low-level reward design in this domain.

5.3 Numerical Experiments
As a precursor to evaluting solutions to HRDL, we also conducted

experiments where hand-crafted flat and hierarchical rewards were

used directly to train policies without requiring reward generation
from language specifications. These experiments serve as a proof-

of-concept and demonstrate that:

• given expert-specified hierarchical rewards (𝑟 ∗
𝐻
, 𝑟 ∗

𝐿
), existing RL

algorithms can effectively learn hierarchical policies (𝜋∗
𝐻
, 𝜋∗

𝐿
)

that achieve high task performance and strong alignment with

designer specifications; and

• while expert-specified flat rewards 𝑟 ∗
𝑓 𝑙𝑎𝑡

can capture some behav-

ioral specifications, they fail to express ones that require knowl-

edge of the previous subtask (e.g., the persistence specification in

Rescue World and the diversity specification in iTHOR).

Figure 5: Syntax error rates for LLM-based reward generation,
computed over 24 candidates per configuration.

We report these preliminary results in Sec. D.2 in the Appendix.

Now, we return to the core HRDL setting, where designed rewards

must be synthesized from natural language inputs.

5.3.1 Q1. Are the designed rewards syntactically correct? Figure 5

shows that hierarchical reward generation achieves substantially

lower code generation error rates than flat reward generation in all

three domains, suggesting that formulating the HRL reward design
problem hierarchically can simplify reward synthesis for LLMs. In
Rescue World, the main source of errors for flat rewards is the infea-

sibility of expressing the persistence specification using only state

features – this requires access to the prior option, which flat re-

wards cannot capture. Despite this, the LLM attempts to enforce the

specification, hallucinating variables like last_delivered_type
that are not available in the state or prompt. Flat reward generation

similarly struggles in iTHOR when trying to express the diver-
sity specification as this also requires access to the prior option,

causing the LLM to attempt to access internal environment state

variables that are not available to it. In Kitchen, higher error rates

stem from the complexity of reasoning over low-level actions. For

example, correctly checking if the agent is chopping an onion on

the low-level requires inspecting coordinate-level state variables,

which frequently leads to errors such as ‘int’ object is not
subscriptable. In contrast, having access to the options space in

HRD enables direct reasoning over high-level behaviors (e.g., chop
onion), greatly simplifying reward generation.

5.3.2 Q2. Do the designed rewards preserve task feasibility? Hier
consistently better preserves task feasibility than Flat also across all
domains (Figure 6), which is essential for real-world deployment. In

Rescue World, attempts to encode the persistence specification with

a flat reward often rely on spurious assumptions (e.g., inferring the

last delivered item type from location), leading to unintended be-

haviors. In iTHOR, the agent’s task completion rate is notably low.

Similar to Rescue World, the agent often relies on spurious heuris-

tics to determine the type of object previously delivered, resulting

in unintended reward accumulation. Moreover, when executing the

“PickNearestTarget” primitive, the agent fails to correctly identify

which object it is picking up: it checks object states (e.g., whether

an item is in the sink or on the dining table) rather than computing

distances to determine the nearest object. This behavior further

contributes to incorrect reward accumulation. In Kitchen, flat re-

wards often struggle to reason over low-level actions; for instance,

it can be error-prone to infer which cutting board or ingredient

the agent is interacting with based solely on directional actions,

leading to alignment rewards that interfere with task completion.

Figure 6: Task completion rates for LLM-generated rewards,
calculated as the proportion of designed rewards that pre-
serve task feasibility among syntactically valid candidates.

5.3.3 Q3. Do the designed rewards actually lead to agent behav-
ior that match the behavioral specifications? Table 1 summarizes

how well each method aligns with the behavioral specifications, as

measured by the handcrafted ground-truth rewards (𝑟𝐻 , 𝑟𝐿). The
Total metric combines task and alignment rewards, serving as an

empirical proxy for the overall fitness 𝐹 . In Rescue World, Hier
substantially outperforms both Task and Flat baselines on high-

level alignment, achieving an average return of 16.65 and fully

matching the high-level specification in 76.92% of successful runs.

This highlights Hier’s ability to encode the persistence specification,
which flat rewards fundamentally cannot represent. While Flat oc-
casionally (12.50%) attains expert-level high-level alignment, these

instances are coincidental. Both methods perform comparably on

low-level alignment, as the agent’s carrying status can be inferred

directly from observable states without explicit option conditioning.

Overall, Hier achieves the highest total return, with 69.23% of policy

pairs reaching expert-level alignment on both levels, demonstrating

that it captures designer intent while maintaining task success.

In iTHOR, Hier outperforms Flat on high-level alignment (14.19

vs. 7.67) in a similar manner as in Rescue World, as the diversity
specification cannot be fully captured by the flat reward without

access to the agent’s current option. In this case, Hier also signifi-

cantly outperforms Flat on low-level alignment (-3.75 vs. -35.20) as

well. We notice that although the LLM is explicitly asked to penalize

the agent’s proximity to the stool when on its way to picking up or

dropping an egg, the generated flat rewards only apply the penalty

in the timestep that the agent is specifically performing the pick or

place action, leading the agent to not avoid the stool. This makes

sense, as it is difficult to discern the agent’s intent in picking up or

dropping an egg from just the state without option information.

In Kitchen, Hier again surpasses Flat, achieving higher high-level
alignment returns (0.39 vs. 0.06) and a substantially greater success

rate in capturing the chopping specification (92.86% vs. 10.00%). Im-

portantly, while the flat reward formulation is theoretically capable
of capturing the desired chopping behavior, doing so requires com-

plex and error-prone logic: only 1 flat reward candidate successfully

implemented the intended specification. This demonstrates a key

advantage of designing rewards for HRL with HRD: even when

flat rewards are theoretically sufficient, hierarchical rewards can

simplify reward design through high-level abstractions and lead to

better alignment with behavioral specifications. Example videos of

policies for all domains are included in supplementary material.

Table 1: Table showing the performance of policies trained with the task reward either alone or combined with LLM-generated
flat or hierarchical rewards. For each metric, we report both the cumulative reward returns and the percentage of policies at
expert-level alignment (attaining the maximum possible cumulative return for that metric). “High-Level” and “Low-Level”
rewards for evaluation are computed using handcrafted alignment rewards. “Total” represents the sum of the task reward
and both the high and low-level alignment rewards. Means and standard deviations are computed over all runs for the Task
baseline, and only over the LLM-generated reward candidates that successfully complete the task for Flat and Hier.

Domain Method High-Level Low-Level Total

Rewards ↑ Expert % ↑ Rewards ↑ Expert % ↑ Rewards ↑ Expert % ↑

Rescue

Task 11.22 ± 5.57 20.00 -16.46 ± 5.49 0.00 73.80 ± 5.70 0.00

Flat 9.38 ± 7.02 12.50 -2.62 ± 5.19 62.50 85.13 ± 9.33 12.50

Hier 16.65 ± 6.93 76.92 -0.69 ± 1.58 76.92 93.98 ± 9.01 69.23

iTHOR

Task 4.10 ± 1.34 0.00 -23.38 ± 1.86 0.00 12.31 ± 0.66 0.00

Flat 7.67 ± 4.48 0.00 -35.20 ± 12.42 0.00 3.27 ± 9.31 0.00

Hier 14.19 ± 2.23 87.50 -3.75 ± 8.14 75.00 37.68 ± 6.68 62.50

Kitchen

Task 0.00 ± 0.00 0.00 – – 0.75 ± 0.00 0.00

Flat 0.06 ± 0.13 10.00 – – 0.80 ± 0.12 10.00

Hier 0.39 ± 0.05 92.86 – – 1.08 ± 0.05 92.86

Figure 7: Human-provided ratings for agent alignment.

5.4 Evaluations with Human Participants
In real-world applications, manually designed ground-truth rewards

are rarely available. To better reflect practical deployment scenarios,

we conducted an IRB-approved user study on Rescue World and

Kitchen using human participants recruited via Prolific. The goal

was to assess whether Hier agents are perceived as better aligned

with behavioral specifications than Flat agents.
In this study, non-expert participants effectively served the role

of fitness function 𝐹 , providing human-centered evaluations. Partic-

ipants viewed videos of agent behaviors produced by both methods

and rated their alignment with textual specifications on a scale from

1 (least aligned) to 5 (most aligned), similar to the scale employed in

the evaluation methodology of [34]. Participants were not aware of

the underlying reward design methods of the policies. We collected

usable responses (e.g., those that passed attention checks) from 30

participants, evenly split across the two domains. Further details of

the study design are provided in Sec. E in the Appendix.

Fig. 7 shows that participants rated Hier agents substantially
higher than Flat agents for aligning with high-level behavioral

specifications. In Rescue World, Hier significantly outperforms Flat
on the persistence preference (4.76 vs. 2.42), a specification that

flat rewards struggle to capture due to the lack of previous option

information. While both methods achieved similar ratings for the

Table 2: Candidate agent policies (%) that received a perfect
alignment score from all human participants.

Rescue World Kitchen

Method Persistence ↑ Safety ↑ Overall ↑ Chopping ↑
Flat 12.50% 50.00% 12.50% 10.00%

Hier 76.92% 61.54% 53.85% 71.43%

low-level safety specification, Hier achieves significantly higher

overall alignment scores (4.64 vs. 3.46). These statistically significant

differences suggest that HRD can be better suited for capturing

complex behavioral specifications.

In Kitchen, Hier sees an even more pronounced improvement

for the chopping specification (4.47 vs. 1.70, 𝑝 < 0.001). This larger

gap arises because, unlike in Rescue World, the preferred behavior

in Kitchen rarely occurs accidentally, as aligning with the chopping
specifications requires taking additional steps in the environment.

Notably, across both domains, Hier policies consistently receives

average ratings above 4, indicating a strong perception of alignment.

These findings suggest that, in practice, when task completion is

used to filter out unsuccessful policies, the remaining Hier candi-
dates are consistently well-aligned with behavioral specifications.

Table 2 shows that over half of the policies produced by Hier
achieve perfect human ratings across all behavioral specifications,

substantially outperforming those generated by Flat. Overall, Hier
consistently outperforms Flat in capturing language-based behav-

ioral specifications across domains in both simulated evaluations

and user studies.

6 Conclusion
This paper introduces the Hierarchical Reward Design (HRD)
problem, which (1) formulates a more expressive reward structure

than flat rewards, (2) integrates seamlessly with existing decision-

making frameworks and RL algorithms, and (3) better encodes

behavioral specifications for long-horizon tasks, with an initial

solution to this problem (L2HR) achieving considerably better or

comparable results in both numerical and human evaluations.

While our results provide strongmotivation for HRD, several lim-

itations and interesting areas for future investigation remain. First,

our experiments focus on complex but simulated domains; future

work should evaluate the effectiveness of HRD in real-world appli-

cations, such as robotics and interactive AI systems. Additionally,

exploring more sophisticated reward generation techniques (poten-

tially incorporating evolutionary optimization or human feedback)

remains a promising direction for future research.

Last but not least, we emphasize that human-agent alignment is
inherently challenging and HRD should not be viewed in isolation.
Rather, it serves as a complementary approach within a broader

ecosystem of methods, including learning from demonstrations,

rankings, user corrections, and more. Understanding how HRDL

and L2HR interact with these approaches is an important avenue

for future work, bringing us closer to AI agents that are reliably

aligned with human needs, values and objectives.

REFERENCES
[1] Pieter Abbeel and Andrew Y Ng. 2004. Apprenticeship learning via inverse

reinforcement learning. In Proceedings of the twenty-first international conference
on Machine learning. 1.

[2] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-

cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal

Anadkat, et al. 2023. Gpt-4 technical report. arXiv preprint arXiv:2303.08774
(2023).

[3] Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes,

Byron David, Chelsea Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol Haus-

man, et al. 2022. Do as i can, not as i say: Grounding language in robotic

affordances. arXiv preprint arXiv:2204.01691 (2022).
[4] Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and

Dan Mané. 2016. Concrete problems in AI safety. arXiv preprint arXiv:1606.06565
(2016).

[5] Pierre-Luc Bacon, Jean Harb, and Doina Precup. 2017. The option-critic architec-

ture. In Proceedings of the AAAI conference on artificial intelligence, Vol. 31.
[6] Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova

DasSarma, Dawn Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. 2022.

Training a helpful and harmless assistant with reinforcement learning from

human feedback. arXiv preprint arXiv:2204.05862 (2022).
[7] Chandrayee Basu, Mukesh Singhal, and Anca D Dragan. 2018. Learning from

richer human guidance: Augmenting comparison-based learning with feature

queries. In Proceedings of the 2018 ACM/IEEE International Conference on Human-
Robot Interaction. 132–140.

[8] Siddhant Bhambri, Amrita Bhattacharjee, Durgesh Kalwar, Lin Guan, Huan

Liu, and Subbarao Kambhampati. 2024. Extracting Heuristics from Large Lan-

guage Models for Reward Shaping in Reinforcement Learning. arXiv preprint
arXiv:2405.15194 (2024).

[9] Matthew M Botvinick, Yael Niv, and Andew G Barto. 2009. Hierarchically orga-

nized behavior and its neural foundations: A reinforcement learning perspective.

cognition 113, 3 (2009), 262–280.

[10] Richard Catrambone. 1998. The subgoal learning model: Creating better examples

so that students can solve novel problems. Journal of experimental psychology:
General 127, 4 (1998), 355.

[11] Ruihai Chen, Hao Li, Guanwei Yan, Haojie Peng, and Qian Zhang. 2023. Hier-

archical reinforcement learning framework in geographic coordination for air

combat tactical pursuit. Entropy 25, 10 (2023), 1409.

[12] Sonia Chernova and Andrea L Thomaz. 2022. Robot learning from human teachers.
Springer Nature.

[13] Carlos G Correa, Mark KHo, Frederick Callaway, Nathaniel D Daw, and Thomas L

Griffiths. 2023. Humans decompose tasks by trading off utility and computational

cost. PLoS computational biology 19, 6 (2023), e1011087.

[14] Peter Dayan and Geoffrey E Hinton. 1992. Feudal reinforcement learning. Ad-
vances in neural information processing systems 5 (1992).

[15] Thomas G Dietterich. 2000. Hierarchical reinforcement learning with the MAXQ

value function decomposition. Journal of artificial intelligence research 13 (2000),

227–303.

[16] Yuqing Du, Olivia Watkins, Zihan Wang, Cédric Colas, Trevor Darrell, Pieter

Abbeel, Abhishek Gupta, and Jacob Andreas. 2023. Guiding pretraining in rein-

forcement learning with large language models. In International Conference on
Machine Learning. PMLR, 8657–8677.

[17] Justin Fu, Katie Luo, and Sergey Levine. 2017. Learning robust rewards with ad-

versarial inverse reinforcement learning. arXiv preprint arXiv:1710.11248 (2017).
[18] Daniel Furelos-Blanco, Mark Law, Anders Jonsson, Krysia Broda, and Alessandra

Russo. 2023. Hierarchies of reward machines. In International Conference on
Machine Learning. PMLR, 10494–10541.

[19] Juan Angel Gonzalez-Aguirre, Ricardo Osorio-Oliveros, Karen L Rodriguez-

Hernandez, Javier Lizárraga-Iturralde, Ruben Morales Menendez, Ricardo A

Ramirez-Mendoza, Mauricio Adolfo Ramirez-Moreno, and Jorge de Jesus Lozoya-

Santos. 2021. Service robots: Trends and technology. Applied Sciences 11, 22
(2021), 10702.

[20] Dylan Hadfield-Menell, Smitha Milli, Pieter Abbeel, Stuart J Russell, and Anca

Dragan. 2017. Inverse reward design. Advances in neural information processing
systems 30 (2017).

[21] Xu Han, Qiannan Yang, Xianda Chen, Zhenghan Cai, Xiaowen Chu, and Meixin

Zhu. 2024. Autoreward: Closed-loop reward design with large language models

for autonomous driving. IEEE Transactions on Intelligent Vehicles (2024).
[22] Jonathan Ho and Stefano Ermon. 2016. Generative adversarial imitation learning.

Advances in neural information processing systems 29 (2016).
[23] Guy Hoffman and Xuan Zhao. 2020. A primer for conducting experiments in

human–robot interaction. ACM Transactions on Human-Robot Interaction (THRI)
10, 1 (2020), 1–31.

[24] Jie Huang and Kevin Chen-Chuan Chang. 2022. Towards reasoning in large

language models: A survey. arXiv preprint arXiv:2212.10403 (2022).
[25] Xiaohui Huang, Jiahao Ling, Xiaofei Yang, Xiong Zhang, and Kaiming Yang.

2023. Multi-agent mix hierarchical deep reinforcement learning for large-scale

fleet management. IEEE Transactions on Intelligent Transportation Systems 24, 12
(2023), 14294–14305.

[26] Rodrigo Toro Icarte, Toryn Q Klassen, Richard Valenzano, and Sheila A McIlraith.

2022. Reward machines: Exploiting reward function structure in reinforcement

learning. Journal of Artificial Intelligence Research 73 (2022), 173–208.

[27] Yiding Jiang, Shixiang Shane Gu, Kevin P Murphy, and Chelsea Finn. 2019. Lan-

guage as an abstraction for hierarchical deep reinforcement learning. Advances
in Neural Information Processing Systems 32 (2019).

[28] Kexin Jin, Guohui Tian, Bin Huang, Yongcheng Cui, and Xiaoyu Zheng. 2024.

Reward Design Framework Based on Reward Components and Large Language

Models. In 2024 4th International Conference on Artificial Intelligence, Robotics,
and Communication (ICAIRC). IEEE, 278–282.

[29] Cory D Kidd and Cynthia Breazeal. 2008. Robots at home: Understanding long-

term human-robot interaction. In 2008 IEEE/RSJ International Conference on
Intelligent Robots and Systems. IEEE, 3230–3235.

[30] Juho Kim, Robert C Miller, and Krzysztof Z Gajos. 2013. Learnersourcing subgoal

labeling to support learning from how-to videos. In CHI’13 Extended Abstracts
on Human Factors in Computing Systems. 685–690.

[31] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-

mization. arXiv preprint arXiv:1412.6980 (2014).
[32] Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli VanderBilt, Luca Weihs, Alvaro

Herrasti, Matt Deitke, Kiana Ehsani, Daniel Gordon, Yuke Zhu, et al. 2017. Ai2-

thor: An interactive 3d environment for visual ai. arXiv preprint arXiv:1712.05474
(2017).

[33] Tejas D Kulkarni, Karthik Narasimhan, Ardavan Saeedi, and Josh Tenenbaum.

2016. Hierarchical deep reinforcement learning: Integrating temporal abstraction

and intrinsic motivation. Advances in neural information processing systems 29
(2016).

[34] Minae Kwon, Sang Michael Xie, Kalesha Bullard, and Dorsa Sadigh. 2023. Reward

design with language models. arXiv preprint arXiv:2303.00001 (2023).
[35] Hao Li, Xue Yang, ZhaokaiWang, Xizhou Zhu, Jie Zhou, Yu Qiao, XiaogangWang,

Hongsheng Li, Lewei Lu, and Jifeng Dai. 2024. Auto mc-reward: Automated dense

reward design with large language models for minecraft. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 16426–16435.

[36] Meng Li, Zhibin Li, Bingtong Wang, and Shunchao Wang. 2024. A Bounded

Rationality-Aware Car-Following Strategy for Alleviating Cut-In Events and

Traffic Disturbances in Traffic Oscillations. IEEE Transactions on Intelligent
Transportation Systems (2024).

[37] Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi

Leblond, Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. 2022.

Competition-level code generation with alphacode. Science 378, 6624 (2022),

1092–1097.

[38] Jijia Liu, Chao Yu, Jiaxuan Gao, Yuqing Xie, Qingmin Liao, Yi Wu, and Yu Wang.

2023. Llm-powered hierarchical language agent for real-time human-ai coordi-

nation. arXiv preprint arXiv:2312.15224 (2023).
[39] Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani,

Dinesh Jayaraman, Yuke Zhu, Linxi Fan, and Anima Anandkumar. 2023. Eureka:

Human-level reward design via coding large language models. arXiv preprint
arXiv:2310.12931 (2023).

[40] Shinya Masadome and Taku Harada. 2025. Reward Design Using Large Language

Models for Natural Language Explanation of Reinforcement Learning Agent

Actions. IEEJ Transactions on Electrical and Electronic Engineering (2025).

[41] George A Miller, Galanter Eugene, and Karl H Pribram. 2017. Plans and the

Structure of Behaviour. In Systems research for behavioral science. Routledge,
369–382.

[42] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis

Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013. Playing atari with deep

reinforcement learning. arXiv preprint arXiv:1312.5602 (2013).
[43] Ofir Nachum, Shixiang Shane Gu, Honglak Lee, and Sergey Levine. 2018. Data-

efficient hierarchical reinforcement learning. Advances in neural information
processing systems 31 (2018).

[44] Yusei Naito, Tomohiko Jimbo, Tadashi Odashima, and Takamitsu Matsubara. 2025.

Task-priority Intermediated Hierarchical Distributed Policies: Reinforcement

Learning of Adaptive Multi-robot Cooperative Transport. In 2025 IEEE/SICE
International Symposium on System Integration (SII). IEEE, 1556–1562.

[45] Charles Newton, Christopher Ballinger, Michael Sloma, and Keith Brawner. 2022.

Hierarchical, Discontinuous Agent Reinforcement Learning Rewards in Com-

plex Military-Oriented Environments. In The International FLAIRS Conference
Proceedings, Vol. 35.

[46] Scott Niekum, Andrew G Barto, and Lee Spector. 2010. Genetic programming for

reward function search. IEEE Transactions on Autonomous Mental Development 2,
2 (2010), 83–90.

[47] Liubove Orlov Savko, Zhiqin Qian, Gregory Gremillion, Catherine Neubauer,

Jonroy Canady, Vaibhav Unhelkar, and Catherine Neubauer. 2024. RW4T Dataset:

Data of Human-Robot Behavior and Cognitive States in Simulated Disaster

Response Tasks. In Proceedings of the 2024 ACM/IEEE International Conference on

Human-Robot Interaction. 924–928.
[48] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela

Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. 2022.

Training language models to follow instructions with human feedback. Advances
in neural information processing systems 35 (2022), 27730–27744.

[49] Caroline Pantofaru, Leila Takayama, Tully Foote, and Bianca Soto. 2012. Exploring

the role of robots in home organization. In Proceedings of the seventh annual
ACM/IEEE international conference on Human-Robot Interaction. 327–334.

[50] Ronald Parr and Stuart Russell. 1997. Reinforcement learning with hierarchies of

machines. Advances in neural information processing systems 10 (1997).
[51] Boris T Polyak and Anatoli B Juditsky. 1992. Acceleration of stochastic approx-

imation by averaging. SIAM journal on control and optimization 30, 4 (1992),

838–855.

[52] Martin L Puterman. 2014. Markov decision processes: discrete stochastic dynamic
programming. John Wiley & Sons.

[53] Preeti Ramaraj. 2023. Analysis of Situated Interactive Non-Expert Instruction of A
Hierarchical Task to a Learning Robot. Ph.D. Dissertation.

[54] Dorsa Sadigh, Anca Dragan, Shankar Sastry, and Sanjit Seshia. 2017. Active
preference-based learning of reward functions.

[55] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.

2017. Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347
(2017).

[56] Massimiliano Scopelliti, Maria Vittoria Giuliani, Alexandra M D’amico, and

Ferdinando Fornara. 2004. If I had a robot at home... Peoples’ representation of

domestic robots. In Designing a more inclusive world. Springer, 257–266.
[57] Satinder Singh, Richard L Lewis, and Andrew G Barto. 2009. Where do rewards

come from. In Proceedings of the annual conference of the cognitive science society.
Cognitive Science Society, 2601–2606.

[58] Satinder Singh, Richard L Lewis, Andrew G Barto, and Jonathan Sorg. 2010.

Intrinsically motivated reinforcement learning: An evolutionary perspective.

IEEE Transactions on Autonomous Mental Development 2, 2 (2010), 70–82.
[59] Satinder Pal Singh. 1992. Transfer of learning by composing solutions of elemental

sequential tasks. Machine learning 8 (1992), 323–339.

[60] Jonathan Sorg, Richard L Lewis, and Satinder Singh. 2010. Reward design via

online gradient ascent. Advances in Neural Information Processing Systems 23
(2010).

[61] Jonathan Sorg, Satinder P Singh, and Richard L Lewis. 2010. Internal rewards

mitigate agent boundedness. In Proceedings of the 27th international conference
on machine learning (ICML-10). 1007–1014.

[62] Liting Sun. 2019. Intelligent and High-performance Behavior Design of Autonomous
Systems via Learning, Optimization and Control. University of California, Berke-

ley.

[63] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An intro-
duction. MIT press.

[64] Richard S Sutton, Doina Precup, and Satinder Singh. 1999. Between MDPs and

semi-MDPs: A framework for temporal abstraction in reinforcement learning.

Artificial intelligence 112, 1-2 (1999), 181–211.
[65] Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max

Jaderberg, David Silver, and Koray Kavukcuoglu. 2017. Feudal networks for hier-

archical reinforcement learning. In International conference on machine learning.
PMLR, 3540–3549.

[66] Huaxiaoyue Wang, Kushal Kedia, Juntao Ren, Rahma Abdullah, Atiksh Bhardwaj,

Angela Chao, Kelly Y Chen, Nathaniel Chin, Prithwish Dan, Xinyi Fan, et al.

2024. MOSAIC: A Modular System for Assistive and Interactive Cooking. arXiv
preprint arXiv:2402.18796 (2024).

[67] Xihuai Wang, Shao Zhang, Wenhao Zhang, Wentao Dong, Jingxiao Chen, Ying

Wen, and Weinan Zhang. 2025. Zsc-eval: An evaluation toolkit and benchmark

for multi-agent zero-shot coordination. Advances in Neural Information Processing
Systems 37 (2025), 47344–47377.

[68] Tianbao Xie, Siheng Zhao, Chen Henry Wu, Yitao Liu, Qian Luo, Victor Zhong,

Yanchao Yang, and Tao Yu. 2023. Text2reward: Reward shaping with language

models for reinforcement learning. arXiv preprint arXiv:2309.11489 (2023).
[69] Wenhao Yu, Nimrod Gileadi, Chuyuan Fu, Sean Kirmani, Kuang-Huei Lee,

Montse Gonzalez Arenas, Hao-Tien Lewis Chiang, Tom Erez, Leonard Hasen-

clever, Jan Humplik, et al. 2023. Language to rewards for robotic skill synthesis.

arXiv preprint arXiv:2306.08647 (2023).

[70] Jesse Zhang, Jiahui Zhang, Karl Pertsch, Ziyi Liu, Xiang Ren, Minsuk Chang, Shao-

Hua Sun, and Joseph J Lim. 2023. Bootstrap your own skills: Learning to solve

new tasks with large language model guidance. arXiv preprint arXiv:2310.10021
(2023).

[71] Shangtong Zhang and Shimon Whiteson. 2019. DAC: The double actor-critic

architecture for learning options. Advances in Neural Information Processing
Systems 32 (2019).

[72] Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, Anind K Dey, et al. 2008.

Maximum entropy inverse reinforcement learning.. In Aaai, Vol. 8. Chicago, IL,
USA, 1433–1438.

APPENDIX TABLE OF CONTENTS
A Further Discussion of Related Work 11

B Theoretical Analysis 11

B.1 Low- and High-Level Decision Models 11

B.2 Policy Learning with Hierarchical Rewards 12

B.3 Expressivity of HRD 13

C Language to Hierarchical Rewards (L2HR) Pseudocode 14

D Experimental Details 14

D.1 Further Domain Details 14

D.2 Results with Expert-Provided Rewards 15

D.3 Training Setup 16

D.4 LLM Prompts 17

D.5 Example LLM-Generated Rewards 29

E User Study Details 34

E.1 Experiment Protocol 34

E.2 Participants 35

E.3 Data Analysis 35

F Code Availability and Release 35

A Further Discussion of Related Work
Reward Machines (RMs) Reward Machines (RMs) [26] provide a structured representation of reward functions. However, their primary

objective differs fundamentally from that of Reward Design and, consequently, HRD. RMs aim to help RL agents exploit its reward structure

to improve sample efficiency during learning. In contrast, HRD focuses on producing hierarchical reward structures that maximize policy

fitness, which in our case is measured by the policy’s alignment with behavioral specifications. In addition to the different goals, the

underlying representations are also distinct. RMs rely on temporal logic formulas to define structured rewards, while HRD extends the

original Reward Design Problem [57] and defines hierarchical reward functions inspired by established HRL frameworks (e.g., options and

feudal hierarchies). Building on RMs, [18] introduced Hierarchies of Reward Machines (HRMs) to increase the expressivity of RMs and

further accelerate policy convergence in some cases. Again, while HRMs aim to improve learning efficiency, HRD focuses on enabling the

capture of complex behavioral specifications through a hierarchical reward structure, particularly for long-horizon tasks. Because RMs or

HRMs do not focus specifically on reward design from human input, the ease of specifying RMs or HRMs from human input remains to be

investigated. In contrast, for the HRD problem using the L2HR algorithm and human evaluations, we have empirically shown that language

models can leverage the structure of HRD to generate hierarchical rewards that induce policies well-aligned with complex behavioral

specifications. An interesting future direction is to explore novel approaches that leverage complementary strengths of RMs and HRD to

facilitate both sample-efficient and human-aligned AI.

LLM-RL Hybrid Agents Although our work focuses on hierarchical RL paradigms, there is a growing body of research on hybrid

agents that combine large language models (LLMs) for subtask selection with reinforcement learning for subtask execution [3, 70]. HRD

can help contribute to this line of work in two key ways. First, it can provide a formalism for analyzing reward design in hybrid LLM-RL

systems. Second, it can inform the development of advanced methods that leverage LLMs with hierarchical reward structures, combining the

expressivity of hierarchical rewards with a user-friendly reward design process.

B Theoretical Analysis
B.1 Low- and High-Level Decision Models
B.1.1 Low-Level MDP Models

Proposition 1 (Low-level MDP Models). LetM𝑝 = (S,A,𝑇 ,𝛾) be a world model, O a set of options, and 𝑟𝐿 : S ×O ×A → R a low-level
reward. For a fixed option 𝑜 ∈ O, the tupleM𝐿,𝑜 = (S,A,𝑇 , 𝑟𝐿 (·, 𝑜, ·), 𝛾, ℎ𝑜) defines an MDP, where ℎ𝑜 is the horizon determined by the option’s
termination condition 𝛽 (·, 𝑜).

Proof. The state space is S and the action space is A. The transition function 𝑇 is the transition function of the world model and is

Markovian. Defining 𝑟𝐿,𝑜 (𝑠, 𝑎) = 𝑟𝐿 (𝑠, 𝑜, 𝑎) produces a Markov reward function that depends only on the state-action pair. Thus, the tuple

satisfies the four standard components of an MDP. □

B.1.2 High-Level SMDP Model

Proposition 2 (High-level SMDP Model). LetM𝑝 = (S,A,𝑇 ,𝛾, ℎ) be a world model, O a set of options, and 𝑟𝐻 : O × S × O → R the
high-level reward. Then,M𝐻 = (O ×S,O,𝑇𝐻 , 𝑟𝐻 , 𝛾, ℎ) forms a semi-MDP, where𝑇𝐻 : O ×S ×O → Δ(O ×S ×N) defines the joint distribution
over the next augmented state and transit time, where N is the set of natural numbers.

Proof. A semi-MDP (SMDP) requires (1) a set of states, (2) a set of actions, (3) for each state-action pair, an expected discounted reward,

and (4) a well-defined joint distribution over the next state and transit time [64].

We define the state space as the Cartesian product O × S, combining the previous option 𝑜− ∈ O and the current environment state 𝑠 ∈ 𝑆 .
The action space is the set of options O. The reward function for each state-action pair

(
(𝑜−, 𝑠), 𝑜

)
is given by the provided high-level reward

𝑟𝐻 (𝑜−, 𝑠, 𝑜).
To define the transition dynamics, consider the transition probability from a given augmented state (𝑜−, 𝑠) upon selecting an option 𝑜 . Let

𝑠′ denote the state upon option termination and 𝑘 the number of timesteps to reach 𝑠′. The transition function 𝑇𝐻 is defined as:

𝑇𝐻 (𝑜, 𝑠′, 𝑘 |𝑜−, 𝑠, 𝑜) =
∑︁

𝜏 : (𝑜− ,𝑠)→(𝑜,𝑠′)
Pr(𝜏 ;𝜋𝐿,𝑜) · I{𝑘=|𝜏 | } · 𝛽 (𝑠′, 𝑜) (6)

where 𝜏 is any trajectory that starts in state 𝑠 after option 𝑜− and reaches state 𝑠′ via option 𝑜 , Pr(𝜏 ;𝜋𝐿,𝑜) is the probability of trajectory

𝜏 under policy 𝜋𝐿,𝑜 , and |𝜏 | is the number of timesteps taken by the trajectory. Given a specific 𝜏 = (𝑜𝑡−1, 𝑠𝑡 , 𝑜𝑡 , 𝑠𝑡+1, ... , 𝑜𝑡+𝜂−1, 𝑠𝑡+𝜂) and
knowing that 𝑜𝑡−1 = 𝑜− and 𝑜𝑡 , ... , 𝑜𝑡+𝜂−1 = 𝑜 , the probability of the trajectory is given by:

Pr(𝜏 ;𝜋𝐿,𝑜) =
𝜂−1∏
𝑖=0

(∑︁
𝑎

𝜋𝐿,𝑜 (𝑎 |𝑠𝑡+𝑖)𝑇 (𝑠𝑡+𝑖+1 |𝑠𝑡+𝑖 , 𝑎)
)
·
𝜂−2∏
𝑖=0

(
1 − 𝛽 (𝑠𝑡+𝑖+1, 𝑜)

)
(7)

The first product accounts for the probabilities of transitioning through the intermediate states under 𝜋𝐿,𝑜 and the environment’s underlying

dynamics 𝑇 . The second product ensures that the option does not terminate at intermediate states prior to reaching 𝑠′. As all four conditions
are satisfied, the tupleM𝐻 forms a valid SMDP.

□

B.1.3 High-LevelMDPModel Alternatively, the high-level process can bemodeled as anMDP if single-step high-level rewards 𝑟𝑠𝑡𝑒𝑝
𝐻
(𝑜𝑡−1, 𝑠𝑡 , 𝑜𝑡)

are defined. [71] was the first to model high-level decision-making as an MDP within the options framework. While our formulation differs

from theirs, we draw inspiration from their use of single-step high-level rewards and demonstrate that the high-level process in our setting

can also be modeled as an MDP.

Proposition 3 (High-level MDP Model). LetM𝑝 = (S,A,𝑇 ,𝛾, ℎ) be a world model, O a set of options, and 𝑟𝑠𝑡𝑒𝑝
𝐻

: O × S × O → R a
“single-step” high-level reward. Then,M𝑠𝑡𝑒𝑝

𝐻
= (O × S,O,𝑇 𝑠𝑡𝑒𝑝

𝐻
, 𝑟

𝑠𝑡𝑒𝑝

𝐻
, 𝛾, ℎ) forms an MDP, where 𝑇 𝑠𝑡𝑒𝑝

𝐻
: O × S × O → Δ(O × S).

Proof. We again define the state space as O × S and the action space as O. The transition function is defined as: 𝑇
𝑠𝑡𝑒𝑝

𝐻
(𝑜, 𝑠′ |𝑜−, 𝑠, 𝑜) =∑

𝑎 𝜋𝐿 (𝑎 |𝑠, 𝑜) ·𝑇 (𝑠′ |𝑠, 𝑎) · I{𝑜′=𝑜 } . Termination condition is not modeled in the transition function, since option selection occurs at every step.

The reward function is 𝑟
𝑠𝑡𝑒𝑝

𝐻
, which satisfies the MDP requirements. □

As a side note, we can derive the expected SMDP high-level reward from the single-step rewards as follows:

𝑟𝐻 (𝑜−, 𝑠, 𝑜) � E[
𝑘∑︁
𝑖=1

𝛾𝑖−1𝑟
𝑠𝑡𝑒𝑝

𝐻 𝑡+𝑖 |E(𝑜
−, 𝑜, 𝑠, 𝑡)] (8)

where E(𝑜−, 𝑜, 𝑠, 𝑡) is the event of initiating option 𝑜 in state 𝑠 at timestep 𝑡 following option 𝑜− , and 𝑘 is the random variable denoting the

number of steps after which the initiated option 𝑜 terminates, as determined by its termination condition 𝛽 .

B.2 Policy Learning with Hierarchical Rewards
Given hierarchical reward functions in Definition 1 and Definition 2, agents can learn low- and high-level policies through interactions with

the environment under their respective decision-making models.

B.2.1 Low-Level Policy Learning For each option 𝑜𝑖 ∈ O, the low-level decision-making process can be formulated as an MDPM𝐿,𝑜𝑖 (see

Proposition 1). Let 𝑟𝐿,𝑜𝑖 (𝑠, 𝑎) = 𝑟𝐿 (𝑠, 𝑜𝑖 , 𝑎) represent the reward function for option 𝑜𝑖 and 𝜋𝑜𝑖 (𝑎 |𝑠) a policy in the MDP. The objective for

low-level policy learning is to maximize the cumulative discounted rewards until the termination of option 𝑜𝑖 :

𝜋𝐿 (𝑎 |𝑠, 𝑜=𝑜𝑖) = argmax

𝜋𝑜𝑖

E𝑠𝑡∼𝑇,𝑎𝑡∼𝜋𝑜𝑖 [
ℎ𝑜∑︁
𝑡=0

𝛾𝑡𝑟𝐿,𝑜𝑖 (𝑠𝑡 , 𝑎𝑡) |M𝐿,𝑜𝑖] (9)

where ℎ𝑜 is the horizon determinied by the option’s termination condition 𝛽 (·, 𝑜𝑖). Standard RL algorithms for MDPs can be directly used to

obtain low-level policies.

B.2.2 High-Level Policy Learning (SMDP) When the high-level decision-making is modeled by an SMDP, the high-level policy 𝜋𝐻 (𝑜 |𝑜−, 𝑠)
selects options only at the termination of the previous option, operating on a coarser temporal scale compared to the low-level policy

𝜋𝐿 (𝑎 |𝑠, 𝑜). Let 𝑢 = 0, . . . , ℎ index the high-level decision points, and define 𝜂𝑜𝑢 as the number of primitive timesteps taken to execute option

𝑜𝑢 . Then, the high-level policy learning objective is:

𝜋𝐻 (𝑜 |𝑜−, 𝑠) = argmax

𝜋
E(𝑜𝑢−1,𝑠𝑢 ,𝜂𝑜𝑢−1)∼𝑇𝐻 , 𝑜𝑢∼𝜋 [

ℎ∑︁
𝑢=0

𝛾𝑇𝑢 𝑟𝐻 (𝑜𝑢−1, 𝑠𝑢 , 𝑜𝑢) |M𝐻], (10)

where 𝑇𝑢 =

𝑢−1∑︁
𝑗=−1

𝜂𝑜 𝑗

Here, we need to extend the SMDP by introducing a dummy initial option 𝑜#, with zero duration, and let 𝑜−1 = 𝑜#. Any algorithm for

learning option-level policies in an SMDP can be used here.

B.2.3 High-Level Policy Learning (MDP) The learning objective when the high-level decision-making is modeled by an MDP is:

𝜋
𝑠𝑡𝑒𝑝

𝐻
(𝑜 |𝑜−, 𝑠) = argmax

𝜋
E(𝑜𝑡−1,𝑠𝑡)∼𝑇 𝑠𝑡𝑒𝑝

𝐻
, 𝑜𝑡∼𝜋 [

ℎ∑︁
𝑡=0

𝛾𝑡𝑟
𝑠𝑡𝑒𝑝

𝐻
(𝑜𝑡−1, 𝑠𝑡 , 𝑜𝑡)) |M𝑠𝑡𝑒𝑝

𝐻
] (11)

Similarly, we let 𝑜−1 = 𝑜#. When the termination condition is known, as in our setting, the high-level policy can be expressed as:

𝜋
𝑠𝑡𝑒𝑝

𝐻
(𝑜 |𝑜−, 𝑠) � 𝛽 (𝑠, 𝑜−)𝜋𝐻 (𝑜 |𝑜−, 𝑠) + (1 − 𝛽 (𝑠, 𝑜−))I(𝑜=𝑜−) , where 𝜋𝐻 (𝑜 |𝑜−, 𝑠) specifies the policy at decision points. This allows leveraging

known termination conditions to constrain policy rollouts.

B.3 Expressivity of HRD
Property 1. Certain specifications on sub-task selection can be expressed through 𝑟𝐻 (𝑜−, 𝑠, 𝑜), but they cannot be expressed by a flat reward

function: 𝑟 𝑓 𝑙𝑎𝑡 (𝑠, 𝑎).

Proof. Consider two distinct subtask sequences, {𝑜1 → 𝑜2} and {𝑜
′
1
→ 𝑜 ′

2
} such that after executing either 𝑜1 or 𝑜

′
1
, the agent arrives at the

same state 𝑠∗. The designer’s specification is for the agent to follow the corresponding subtask sequences: execute 𝑜2 after 𝑜1 and 𝑜
′
2
after 𝑜 ′

1
.

A flat reward function 𝑟 𝑓 𝑙𝑎𝑡 (𝑠, 𝑎) cannot represent this specification, as the reward signal depends only on the current state and action, and

cannot distinguish whether the agent reached 𝑠∗ via 𝑜1 or 𝑜 ′1. In contrast, with HRD’s high-level reward function, we can specify the ordering

even in 𝑠∗ by defining 𝑟𝐻 (𝑜−=𝑜1, 𝑠=𝑠∗, 𝑜=𝑜2) > 𝑟𝐻 (𝑜−=𝑜1, 𝑠=𝑠∗, 𝑜 ≠ 𝑜2) and 𝑟𝐻 (𝑜−=𝑜 ′1, 𝑠=𝑠∗, 𝑜=𝑜 ′2) > 𝑟𝐻 (𝑜−=𝑜 ′1, 𝑠=𝑠∗, 𝑜 ≠ 𝑜 ′
2
). □

Property 2. Certain specifications on sub-task execution can be expressed through 𝑟𝐿 (𝑠, 𝑜, 𝑎), but they cannot be expressed by a flat reward
function: 𝑟 𝑓 𝑙𝑎𝑡 (𝑠, 𝑎).

Proof. Consider a setting where the behavioral specification explicitly depends on the current option 𝑜 . Such specifications cannot be

represented using a flat reward function, as the reward signal 𝑟 𝑓 𝑙𝑎𝑡 (𝑠, 𝑎) is identical for all option values. □

C Language to Hierarchical Rewards (L2HR) Pseudocode

Algorithm 1 Language to Hierarchical Rewards (L2HR)

1: Input: World modelM𝑝 , set of options O, learning routine AM𝑝
, task reward 𝑟 , pseudo-reward 𝑟𝑝 , specifications 𝑙 , thresholds for

successful subtask and task completion 𝑡𝐿 and 𝑡𝐻 , and an LLM.

2: 𝑟
(1)
𝐿

, . . . , 𝑟
(𝑘)
𝐿
← LLM(LowLevelPrompt(𝑙)) ⊲ Generate low-level alignment rewards

3: for 𝑖 = 1 to 𝑘 do
4: if Static_Check(𝑟 (𝑖)

𝐿
) then

// AM𝑝 :𝐿,· denotes the learning subroutine for low-level MDPsM𝐿,·

5: 𝜋
(𝑖)
𝐿
← AM𝑝 :𝐿,· (𝑟𝑝 + 𝑟

(𝑖)
𝐿
)

6: end if
7: end for
8: I ← Indices of 𝜋

(𝑖)
𝐿

achieving cumulative pseudo-rewards above threshold 𝑡𝐿

9: 𝑟
(1)
𝐻

, . . . , 𝑟
(𝑘)
𝐻
← LLM(HighLevelPrompt(𝑙)) ⊲ Generate high-level alignment rewards

10: for 𝑗 = 1 to 𝑘 do
11: if Static_Check(𝑟 (𝑗)

𝐻
) then

12: Select low-level policy 𝜋
(𝑖)
𝐿

, where 𝑖 ∈ I ⊲ Done via hashing in our implementation

// AM𝑝 :𝐻
denotes the learning subroutine for the high-level modelM𝐻

13: 𝜋
(𝑗)
𝐻
← AM𝑝 :𝐻

(𝑟 + 𝑟 (𝑗)
𝐻

;𝜋
(𝑖)
𝐿
)

14: end if
15: end for
16: Output: Return all alignment rewards (𝑟 (𝑗)

𝐻
, 𝑟
(𝑖)
𝐿
) and corresponding trained policy pairs (𝜋 (𝑗)

𝐻
, 𝜋
(𝑖)
𝐿
) that achieve cumulative task rewards

above threshold 𝑡𝐻

D Experimental Details
D.1 Further Domain Details
Rescue World is a variant of the RW4T domain [47], a configurable testbed for simulating disaster response scenarios in which a first

responder deploys robots to collect scattered supplies and deliver them to designated areas. For our experiments, we configure the environment

with a single robot and represent the world using a discrete grid-based layout (Fig. 8a). The robot must determine both the delivery order of
supplies and the optimal path for completing deliveries. This setting naturally motivates a hierarchical action representation due to the need

for subtask sequencing and execution. The primitive action space A includes six actions: pick, drop, and four directional movements (up,

down, left, right). The option space O consists of multi-step pick-up and delivery macro-actions for two supply types: food and medical
supplies.

iTHOR is a simulator built within the AI2-THOR framework [32], featuring realistic household environments where an agent can

navigate and interact with everyday objects. We use FloorPlan 20 as the environment for our experiments. In our setup, apples and eggs

are spawned on one side of a long kitchen table, the sink is located on the opposite side, and a stool is positioned to the right of the table,

as shown in Fig. 8b. The option space O consists of pick-up and place operations for each object type, while the action space A includes

navigation actions (move forward, turn left, turn right) and pick/place primitives. While conducting experiments with expert-provided

rewards (Sec. D.2), we observe that inducing the agent to follow the diversity preference is highly sensitive to the reward scale. To address

this, we include additional contextual information in the LLM prompt specifically about the typical length of the options to guide more

consistent reward generation.

Kitchen is a single-agent variant of Overcooked, a benchmark environment originally designed for studying human-AI collaboration in

kitchen tasks [38, 67]. In our setting, the agent must prepare a salad using lettuce, tomatoes, and onions. We adopt the structured option space

from [38], which includes high-level options such as chop onion and combine chopped onion and chopped tomatoes. The environment

also provides hard-coded low-level controllers for executing these options. The primitive action space A includes directional movement

actions that enable interactions with countertops and other kitchen objects.

The visualizations of the three task domains used in our study are shown in Fig. 8. The Rescue World visualization was generated using

Pygame based on its Gym environment, the iTHOR visualization was created by visually rendering the environment within the Unity engine,

and the Kitchen domain visualization was adopted from [38].

(a) Rescue World Domain (b) iTHOR Domain (c) Kitchen Domain

Figure 8: Screenshots of renderings of the three task domains used in our study.

Table 3: Table showing the performance of policies trained with the task reward alone and with task reward combined with
expert-provided flat or hierarchical rewards. For each metric (“High-Level,” “Low-Level,” and “Total”), we report both the
cumulative returns and the percentage of policies achieving expert-level alignment. A policy is considered expert-aligned at
the high or low level if it attains the maximum possible cumulative return for that metric. “Total” represents the sum of the
task reward, high-level alignment reward, and low-level alignment reward, and a policy is deemed expert-level overall if it
aligns at both levels.

Domain Method High-Level Low-Level Total

Rewards ↑ Expert % ↑ Rewards ↑ Expert % ↑ Rewards ↑ Expert % ↑

Rescue

Task 11.22 ± 5.57 20.00 -16.46 ± 5.49 0.00 73.80 ± 5.70 0.00

Flat* 6.84 ± 5.24 0.00 -0.32 ± 0.72 80.00 85.88 ± 4.66 0.00

Hier* 20.00 ± 0.00 100.00 -1.00 ± 2.24 80.00 97.15 ± 2.94 80.00

iTHOR

Task 4.10 ± 1.34 0.00 -23.38 ± 1.86 0.00 12.31 ± 0.66 0.00

Flat* 7.80 ± 2.41 0.00 0.00 ± 0.00 100.00* 35.41 ± 2.98 0.00

Hier* 15.00 ± 0.00 100.00 0.00 ± 0.00 100.00 42.61 ± 0.35 100.00

Kitchen

Task 0.00 ± 0.00 0.00 – – 0.75 ± 0.00 0.00

Flat* 0.40 ± 0.00 100.00 – – 1.10 ± 0.00 100.00
Hier* 0.40 ± 0.00 100.00 – – 1.10 ± 0.00 100.00

D.2 Results with Expert-Provided Rewards
Table 3 reports the results of policies trained with expert-provided flat 𝑟 ∗

𝑓 𝑙𝑎𝑡
and hierarchical rewards (𝑟 ∗

𝐻
, 𝑟 ∗

𝐿
) (shown in the table as Flat*

and Hier* respectively). In other words, no LLMs were used for reward generation in these experiments. Across all three domains (Rescue

World, iTHOR, and Kitchen), Hier* consistently achieves the highest total returns.

In Rescue World, Hier* matches Flat* in low-level alignment return but significantly outperforms it in high-level alignment, achieving an

average total return of 97.15 with 80.00% policies reaching expert alignment, compared to 85.88 and 0.00% for Flat*. A similar pattern is

observed in iTHOR, where Hier* achieves an average total return of 42.61 with all policies reaching expert alignment, while Flat* achieves
35.41 with none reaching expert alignment. We also note that although Flat* matched Hier* in low-level alignment for iTHOR, it did so

by following the low-level avoidance preference regardless of the option. In contrast, Hier* selectively applies this preference to options

involving eggs, demonstrating finer-grained alignment with low-level human specifications. These results highlight that Hier* better captures
behavioral dependencies related to the current and previous options, enabling it to represent high-level persistence in Rescue World and

diversity in iTHOR, which are beyond the representational capacity of flat rewards.

In Kitchen, Hier* and Flat* perform equally well on both task and high-level returns. While Flat* is theoretically capable of capturing

dependencies on the previous subtask in Kitchen by inferring it from environment state, doing so is difficult and error-prone without

expert-designed rewards, as shown in Sec. 5. Overall, these results demonstrate that expert-designed hierarchical rewards can be easily

integrated with task-related rewards to train policies that (1) achieve strong task performance comparable to baselines without reward

design (2) align well with behavioral specifications, including those that flat rewards cannot effectively represent.

D.3 Training Setup
In our implementation, we used LLMs to generate single-step high-level rewards, allowing the high-level decision process to be modeled as

either an MDP or an SMDP. When using an SMDP, we computed the corresponding SMDP rewards using Eq. 8.

D.3.1 Rescue World For Rescue World, we modeled the high-level decision-making as an SMDP and trained the high-level policy 𝜋𝐻 using

DQN [42]. The hyperparameters for training 𝜋𝐻 are as follows:

• Network: 2 layers with 64 units each and ReLU non-linearities

• Optimizer: Adam [31]

• Learning rate: 1 · 10−4
• Batch size: 256

• Discount: 1.0

• Total timesteps: 3 · 106
• Buffer size: 1 · 106
• Exploration fraction: 0.2

• Initial exploration probability: 0.1

• Final exploration probability: 0.05

• Model update frequency: 4

• Number of gradient steps per rollout: 1

• Target update interval: 1 · 104
• Polyak-averaging [51]: 1.0

We trained the low-level policy 𝜋𝐿 using PPO [55]. The hyperparameters for training 𝜋𝐿 are as follows:

• Network: 2 layers with 64 units each and ReLU non-linearities

• Optimizer: Adam [31]

• Learning rate: 3 · 10−4
• Batch size: 64

• Discount: 1.0

• Total timesteps: 2 · 106
• Initial entropy coefficient: 1

• Final entropy coefficient: 0.01

• Entropy decay fraction: 0.5

• Number of environment steps per update: 2048

D.3.2 iTHOR For iTHOR, we modeled the high-level decision-making as an SMDP and trained the high-level policy 𝜋𝐻 using DQN [42].

The hyperparameters for training 𝜋𝐻 are as follows:

• Network: 2 layers with 128 units each and ReLU non-linearities

• Optimizer: Adam [31]

• Learning rate: 1 · 10−4
• Batch size: 32

• Discount: 0.99

• Total timesteps: 5.0 · 105
• Buffer size: 5 · 105
• Exploration fraction: 0.25

• Initial exploration probability: 1.0

• Final exploration probability: 0.05

• Model update frequency: 4

• Number of gradient steps per rollout: 1

• Target update interval: 1 · 104
• Polyak-averaging [51]: 1.0

We trained the low-level policy 𝜋𝐿 using PPO [55]. The hyperparameters for training 𝜋𝐿 are as follows:

• Network: 2 layers with 64 units each and ReLU non-linearities

• Optimizer: Adam [31]

• Learning rate: 3 · 10−4

• Batch size: 64

• Discount: 1.0

• Total timesteps: 1.5 · 106
• Initial entropy coefficient: 1

• Final entropy coefficient: 0.01

• Entropy decay fraction: 0.5

• Number of environment steps per update: 2048

D.3.3 Kitchen For Kitchen, we modeled the high-level decision-making as an MDP and trained the high-level policy 𝜋𝐻 using DQN [42],

implemented so that termination conditions 𝛽 were enforced during rollouts. We adopted the MDP formulation because it outperformed the

SMDP setting with DQN in this domain. Given the highly delayed rewards and the importance of subtask sequencing in Kitchen, we also

incorporated specification-agnostic demonstrations to bootstrap policy learning. Hyperparameters for learning the high-level policy 𝜋𝐻 are

as follows:

• Network: 2 layers with 256 units each and ReLU non-linearities

• Optimizer: Adam [31]

• Learning rate: 1 · 10−6 with linear scheduling

• Batch size: 256

• Discount: 0.99

• Total timesteps: 3 · 106
• Buffer size: 1 · 106
• Exploration fraction: 0.33

• Initial exploration probability: 0.5

• Final exploration probability: 0.1

• Model update frequency: 4

• Number of gradient steps per rollout: 1

• Target update interval: 1 · 104
• Polyak-averaging [51]: 1.0

For Rescue World and Kitchen, we used a server with 30 vCPUs and an NVIDIA A10 GPU (24GB PCIe) to train 𝑘 policies in parallel, each

corresponding to one of the 𝑘 reward candidates generated by the LLM. For iTHOR, we used a server with an NVIDIA GeForce RTX 5090

GPU to train our policies.

D.4 LLM Prompts
The prompts used in our work are adapted from [39], but differ in important ways to realize hierarchical rewards. Specifically, our prompts

are designed to: (1) reflect a hierarchical reward structure; and (2) generate rewards that align with behavioral specifications while preserving

task feasibility.

D.4.1 System Prompt As in [39], our system prompt provides a concise, domain-agnostic description of the reward design task and defines

the function signature that the LLM should use in its output. The full system prompt is provided in Prompt 1 on Page 18.

D.4.2 User Prompt The user prompts follow a similar methodology to that of [39], using code snippets as contextual input and an

accompanying task-specific natural language description. To support hierarchical reward generation, we extend the accompanying task

description by providing the following: (1) a description of relevant action spaces (i.e., the option space O and/or action space A) to help the

LLM distinguish between temporally extended behaviors and primitive actions; (2) a behavioral specification describing preferences beyond

task completion; (3) additional code formatting guidelines to emphasize that the LLM should capture behavioral logic without making the

reward function stateful (e.g., storing variables across calls). Moreover, the complexity of our domains introduces two additional challenges,

which we address by augmenting the code snippets with further contextual information:

Cross-file Dependencies. In our environments, key components of the task logic often depend on constants and definitions from

separate supporting files (e.g., utils.py). To address this, we manually copied the necessary definitions from these files and included them

as background comments at the top of the environment code provided to the LLM. This ensures all relevant constants and definitions are

explicitly exposed during reward generation.

Complex Observation Representations. Our environments feature structured observations, such as spatial maps, whose semantics are

not fully captured by the observation’s shape or naming alone. For example, it can be difficult to infer what each value in the observation (e.g.,

map cell) represents from the environment code. To mitigate this, we also provided an example observation input as part of the background

comments in cases where the LLM might find it challenging to correctly interpret the structure and meaning of the observation space.

To ensure a fair comparison across conditions, the same code snippets of each domain were used for all reward generation tasks, whether

generating low-level, high-level, or flat rewards. The full environment contexts and corresponding prompts for both Rescue World and

Kitchen are shown in Prompt 2 and Prompt 3 on Page 18 and Page 26 respectively.

Prompt 1: System Prompt

You are a reward engineer trying to write reward functions to solve reinforcement learning tasks as effective as possible. A

programmer has already specified the task reward, and your job is to specify additional rewards according to the user’s preference.

More specifically, your goal is to write an additional reward function for the environment to help the agent complete the task

according to user preference. Your reward function should use useful variables from the environment as inputs. As an example, the

reward function signature can be:

The LLM is presented with one of the following function signatures, selected based on the desired reward function to be designed.
def get_high_level_pref_gpt(state: Dict, prev_option: int, option: int) ->

Tuple[float, Dict[str, float]]:
'''
state: the current state of the environment.
prev_option: the last option (subtask) executed by the agent to reach the
current state.
option: the option (subtask) the agent is about to perform in the current
state.
'''
...
return reward, reward_components

def get_low_level_pref_gpt(state: Dict, option: int, action: int) ->
Tuple[float, Dict[str, float]]:
'''
state: the current state of the environment.
option: the option (subtask) selected by the agent in the current state.
action: the action that the agent is about to perform in the current state.
'''
...
return reward, reward_components

def get_flat_sa_pref_gpt(state: Dict, action: int) -> Tuple[float,
Dict[str, float]]:
'''
state: the current state of the environment.
action: the (low-level) action that the agent is about to perform in the
current state.
'''
...
return reward, reward_components

The output of the reward function should consist of two items:

(1) the user preference reward,

(2) a dictionary of each individual reward component in the user preference reward.

The code output should be formatted as a python code string: "python ... ".

Some helpful tips for writing the reward function code:

(1) Most importantly, the reward code’s input variables must contain only attributes of the provided environment class definition

(namely, variables that have prefix self.). Under no circumstance can you introduce new input variables.

Prompt 2: User Prompt for Rescue World

The Python environment is

'''
Background:

1) Initial game map example
init_map = np.array(

[[
rw4t_utils.RW4T_State.empty.value,
rw4t_utils.RW4T_State.empty.value,
rw4t_utils.RW4T_State.circle.value,

rw4t_utils.RW4T_State.empty.value,
rw4t_utils.RW4T_State.yellow_zone.value,
rw4t_utils.RW4T_State.school.value

],
[

rw4t_utils.RW4T_State.empty.value,
rw4t_utils.RW4T_State.yellow_zone.value,
rw4t_utils.RW4T_State.yellow_zone.value,
rw4t_utils.RW4T_State.empty.value,
rw4t_utils.RW4T_State.yellow_zone.value,
rw4t_utils.RW4T_State.empty.value

],
[

rw4t_utils.RW4T_State.empty.value,
rw4t_utils.RW4T_State.empty.value,
rw4t_utils.RW4T_State.empty.value,
rw4t_utils.RW4T_State.square.value,
rw4t_utils.RW4T_State.yellow_zone.value,
rw4t_utils.RW4T_State.empty.value

],
[

rw4t_utils.RW4T_State.empty.value,
rw4t_utils.RW4T_State.circle.value,
rw4t_utils.RW4T_State.empty.value,
rw4t_utils.RW4T_State.empty.value,
rw4t_utils.RW4T_State.empty.value,
rw4t_utils.RW4T_State.empty.value

],
[

rw4t_utils.RW4T_State.yellow_zone.value,
rw4t_utils.RW4T_State.yellow_zone.value,
rw4t_utils.RW4T_State.empty.value,
rw4t_utils.RW4T_State.empty.value,
rw4t_utils.RW4T_State.yellow_zone.value,
rw4t_utils.RW4T_State.yellow_zone.value

],
[

rw4t_utils.RW4T_State.empty.value,
rw4t_utils.RW4T_State.empty.value,
rw4t_utils.RW4T_State.empty.value,
rw4t_utils.RW4T_State.empty.value,
rw4t_utils.RW4T_State.square.value,
rw4t_utils.RW4T_State.empty.value

]])

2) rw4t.utils:
class RW4T_LL_Actions(Enum):

go_left = 0
go_down = 1
go_right = 2
go_up = 3
pick = 4
drop = 5
idle = 6

class RW4T_HL_Actions_EZ(Enum):
go_to_circle = 0
deliver_circle = 1
go_to_square = 2
deliver_square = 3

class RW4T_HL_Actions_With_Dummy_EZ(Enum):
go_to_circle = 0
deliver_circle = 1
go_to_square = 2
deliver_square = 3
dummy = 4

class RW4T_State(Enum):
empty = 0
circle = 1
square = 2
triangle = 3
obstacle = 4
yellow_zone = 5
orange_zone = 6
red_zone = 7
school = 8
hospital = 9
park = 10

class Holding_Obj(Enum):
empty = 0
circle = 1
square = 2
triangle = 3

'''

import numpy as np
import gymnasium as gym

import rw4t.utils as rw4t_utils

class RW4T_GameState:

def __init__(self, obs: np.ndarray, pos: np.ndarray, holding: int,
option_mask: np.ndarray):

'''
:param obs: a 2D numpy of the current environment
:param pos: a 1D numpy array of the agent's (x, y) position in the

environment
:param holding: an integer indicating what object the agent is currently

holding if any.
This parameter only has a non-empty value AFTER the agent
performs a 'pick up ...' option and BEFORE it performs a
'deliver ...' option.

:param option_mask: a 1D array indicating the valid options to select next
(should not be used when computing rewards, this is only
used in some downstream algorithms)

'''
Y pos in bound
assert pos[1] >= 0 and pos[1] < len(obs)
X pos in bound
assert pos[0] >= 0 and pos[0] < len(obs[0])
holding should be a value in the Holding_Obj Enum
assert holding < len(rw4t_utils.Holding_Obj)
self.obs = obs
self.pos = pos
self.holding = holding
self.option_mask = option_mask

def state_to_dict(self):
return {

'map': np.array(self.obs, dtype=np.int32),
'pos': np.array(self.pos, dtype=np.int32),
'holding': self.holding,
'option_mask': self.option_mask

}

class RW4TEnv(gym.Env):

def get_state(self):
state = RW4T_GameState(self.map, self.agent_pos, self.agent_holding,

self.option_mask)
state_dict = state.state_to_dict()
return state_dict

Write a reward function for the following task:

The LLM receives one of the prompts below, chosen according to the reward function we want it to design. The prompt for each setting is
identical except for (1) descriptions of relevant task spaces (e.g., the flat-reward prompt omits the options space description) and (2) the
behavioral specification (“user preference”) string.

High-Level
Task description:
The task objective is to deliver all objects on the map. In the task reward, the agent gets a reward of +30 when it successfully delivers

an object, and a step cost of -1 for each time step taken. The reward function you write does not need to encode the task objective.

Relevant task spaces:
The agent’s option/subtask (referred to as HL_Action in the code) space consists of going to and delivering the two types of objects.

Each option takes multiple action steps to complete. Taking a ’go to’ option means that the agent will navigate to a supply and pick

it up. Taking a ’deliver’ option means that the agent will navigate to the delivery location and drop the object. Note that the agent

has to first go to the object to pick it up before delivering the object.

User preference:
The agent should pick up an object type that’s the same as the previously delivered object type, if there are still objects of that type

remaining in the environment. Otherwise, the agent should pick up an object of a different type.

Additional info:
You need to write a reward function to encode this user preference. The preference function you write will be used together with

the task reward to train the agent. Please make sure NOT to make the reward function stateful (i.e. you should not use function

attributes or global variables.) You should also not write any other helper functions.

Low-Level
Task description:
The task objective is to deliver all objects on the map. In the task reward, the agent gets a reward of +30 when it successfully delivers

an object, and a step cost of -1 for each time step taken. The reward function you write does not need to encode the task objective.

Relevant task spaces:
The agent’s option/subtask (referred to as HL_Action in the code) space consists of going to and delivering the two types of objects.

Each option takes multiple action steps to complete. Taking a ’go to’ option means that the agent will navigate to a supply and pick

it up. Taking a ’deliver’ option means that the agent will navigate to the delivery location and drop the object. Note that the agent

has to first go to the object to pick it up before delivering the object. The agent’s action (referred to as LL_Action in the code) space

consists of moving in the four cardinal directions, as well as atomic actions pick and drop. The agent can only perform LL_Action

"pick" if it is at the same location as the object.

User preference:
The agent should avoid yellow danger zones when it is delivering an object. However, the agent does not need to avoid danger

zones when it is going to an object.

Additional info:
You need to write a reward function to encode this user preference. The preference function you write will be used together with

the task reward to train the agent. Please make sure NOT to make the reward function stateful (i.e. you should not use function

attributes or global variables.) You should also not write any other helper functions.

Flat
Task description:
The task objective is to deliver all objects on the map. In the task reward, the agent gets a reward of +30 when it successfully delivers

an object, and a step cost of -1 for each time step taken. The reward function you write does not need to encode the task objective.

Relevant task spaces:
The agent’s action (referred to as LL_Action in the code) space consists of moving in the four cardinal directions, as well as atomic

actions pick and drop. The agent can only perform LL_Action "pick" if it is at the same location as the object.

User preference:
The agent should pick up an object type that’s the same as the previously delivered object type, if there are still objects of that type

remaining in the environment. Otherwise, the agent should pick up an object of a different type. In addition, the agent should avoid

yellow danger zones when it is delivering an object. However, the agent does not need to avoid danger zones when it is going to an

object.

Additional info:
You need to write a reward function to encode this user preference. The preference function you write will be used together with

the task reward to train the agent. Please make sure NOT to make the reward function stateful (i.e. you should not use function

attributes or global variables.) You should also not write any other helper functions.

Prompt 3: User Prompt for iTHOR

The Python environment is

'''
Background:

1) utils:
PnP_LL_Actions = [

"MoveAhead",
"RotateLeft",
"RotateRight",
"PickupNearestTarget",
"PutHeldOnReceptacle",

]

class PnP_HL_Actions(Enum):
pick_apple = 0
pick_egg = 1
drop_apple = 2
drop_egg = 3

class PnP_HL_Actions_With_Dummy(Enum):
pick_apple = 0
pick_egg = 1
drop_apple = 2
drop_egg = 3
dummy = 4

'''

import random
import gymnasium as gym
import numpy as np
from gymnasium import spaces
from ai2thor.controller import Controller
from ai2thor.platform import CloudRendering
from typing import Dict, List, Optional

from HierRL.envs.ai2thor.pnp_training_utils import (PnP_HL_Actions,
PnP_HL_Actions_With_Dummy,
PnP_LL_Actions)

from HierRL.envs.ai2thor.pnp_config import avoid_stool

class ThorPickPlaceEnv(gym.Env):
"""
Pick-and-place environment on top of AI2-THOR, using the Gymnasium API.

Episode structure:
- reset() loads a kitchen scene, curates it (move/disable/spawn a few

items), and returns an observation.
- step(a) applies either low-level nav (Move/Rotate/Look) or a simple HL

manipulation (Pickup nearest target / Put on nearest receptacle / Drop).
- reward is currently 0/1 placeholder (see _compute_reward_and_done).

"""
metadata = {"render_modes": ["rgb_array"]}

def __init__(
self,
scene: str = "FloorPlan20", # scene id
pref_dict: Dict[str, List[int]] = avoid_stool, # preference dictionary
visibilityDistance: float = 1, # meters for "visible" flag (not reach)
grid_size: float = 0.25, # movement step in meters
snap_to_grid: bool = True, # keep motion aligned to grid
rotate_step_degrees: int = 90, # degree per rotate action
render_depth: bool = False,
render_instance_masks: bool = False,
target_types=('Apple',

'Egg'), # categories of objects that the agent can pick
receptacle_types=("SinkBasin",), # categories we allow "PutObject" on
max_steps: int = None,
low_level: bool = False, # whether we are working with low-level only
hl_pref_r=None,
option: PnP_HL_Actions = None,
seed: Optional[int] = None,
render: bool = True):

super().__init__()
Save config
self.scene = scene
self.max_steps = max_steps
self.target_types = set(target_types)
self.receptacle_types = set(receptacle_types)
self._rng = random.Random(seed)

h, w = 600, 600
platform = None if render else CloudRendering
self.need_render = render
self.controller = Controller(

width=w,
height=h,
scene=self.scene,
gridSize=grid_size,
snapToGrid=snap_to_grid,
rotateStepDegrees=rotate_step_degrees,
renderDepthImage=render_depth,
renderInstanceSegmentation=render_instance_masks,
visibilityDistance=visibilityDistance,
platform=platform)

self.controller.step(action="Initialize", gridSize=grid_size)

Observation: dictionary-based state space.
self.observation_space = spaces.Dict({

"apple_1_pos":
spaces.Box(-3.0, 3.0, (2,), dtype=np.float32),
"apple_2_pos":
spaces.Box(-3.0, 3.0, (2,), dtype=np.float32),
"egg_1_pos":
spaces.Box(-3.0, 3.0, (2,), dtype=np.float32),
"egg_2_pos":
spaces.Box(-3.0, 3.0, (2,), dtype=np.float32),
"stool_pos":
spaces.Box(-3.0, 3.0, (2,), dtype=np.float32),
"sink_pos":
spaces.Box(-3.0, 3.0, (2,), dtype=np.float32),
"agent_pos":
spaces.Box(-3.0, 3.0, (2,), dtype=np.float32), # x and z pos
"agent_rot":
spaces.Box(0.0, 1.0, (4,),

dtype=np.float32), # y rot (one-hot encoded)
"apple_1_state":
spaces.Discrete(3), # 0 = on table, 1 = held, 2 = in sink
"apple_2_state":
spaces.Discrete(3), # 0 = on table, 1 = held, 2 = in sink
"egg_1_state":
spaces.Discrete(3), # 0 = on table, 1 = held, 2 = in sink
"egg_2_state":
spaces.Discrete(3), # 0 = on table, 1 = held, 2 = in sink

})

Whether we are working with the low-level only
self.low_level = low_level

Adjust task/subtask horizons
if max_steps is not None:

self.max_steps = max_steps
else:

if self.low_level:
self.max_steps = 100

else:
self.max_steps = 500

Define action spaces
self.pnp_ll_actions = PnP_LL_Actions
self.pnp_hl_actions = PnP_HL_Actions
self.pnp_hl_actions_with_dummy = PnP_HL_Actions_With_Dummy

Low level action space: iThor environment commands
self.ll_action_space = spaces.Discrete(len(self.pnp_ll_actions))
self.hl_action_space = spaces.Discrete(len(self.pnp_hl_actions))

High level action space: Options (pick up/drop specific items)
Option values
self.option = option

Initialize environment
self._setup_env()
if self.low_level:

if self.option is None:
self.option = random.choice(list(self.pnp_hl_actions)).value

self.action_space = self.ll_action_space
self.reset(options={'option': self.option})

else:

Replace option with dummy value for high level training
self.option = self.pnp_hl_actions_with_dummy.dummy.value
self.action_space = self.hl_action_space
self.reset()

self.steps = 0

Set preferences
self.pref_dict = pref_dict

Rewards initialization
self.hl_pref_r = hl_pref_r

self._per_step_reward = -0.01
self._obj_drop_reward = 10.0
self._obj_pick_reward = 10.0
self._wrong_obj_pick_reward = -5.0
self._dist_shaping_factor = -0.05
self._ll_penalty = -1
self._ll_radius = 1.5
self._hl_diversity_reward = 5.0

self.prev_option = self.pnp_hl_actions_with_dummy.dummy.value
self.c_task_reward = 0
self.c_pseudo_reward = 0
self.c_gt_hl_pref = 0
self.c_gt_ll_pref = 0

Used for determining successful placement into receptacle
self._drop_success = False
self._pick_apple_success = False
self._pick_egg_success = False

Write a reward function for the following task:

The LLM receives one of the prompts below, chosen according to the reward function we want it to design. The prompt for each setting is
identical except for (1) descriptions of relevant task spaces (e.g., the flat-reward prompt omits the options space description) and (2) the
behavioral specification (“user preference”) string.

High-Level
Task description:
The task objective is to pick up all apples and eggs on the dining table and place them in the sink. In the task reward, the agent gets

a reward of +10 after it successfully picks up an object and places it in the sink, and a step cost of -0.1 for each time step taken. The

reward function you write does not need to encode the task objective.

Relevant task spaces:
The agent’s option/subtask (referred to as self.pnp_hl_actions in the code) space consists of picking up and placing the two types of

objects. Each option takes multiple action steps to complete. Taking a ’pick’ option means that the agent will navigate to an object

and pick it up. Taking a ’place’ option means that the agent will navigate to the delivery location and place the object there. Note

that the agent has to first go to the object to pick it up before placing the object.

User preference:
The agent should pick up an object type that’s different from the previously placed object type, as long as there are objects of the

other type on the table need to be picked.

Additional info:
You need to write a reward function to encode this user preference. The preference function you write will be used together with the

task reward to train the agent. It can take up to 30 steps to reach an object and pick it up, or to reach the sink and drop it off. Make

sure your reward scaling gives the preference for alternating objects much more weight than the negative step rewards, but still

lower than the positive task reward. Please make sure NOT to make the reward function stateful (i.e. you should not use function

attributes or global variables). You should also not write any other helper functions.

Low-Level
Task description:
The task objective is to pick up all apples and eggs on the dining table and place them in the sink. In the task reward, the agent gets

a reward of +10 after it successfully picks up an object and places it in the sink, and a step cost of -0.1 for each time step taken. The

reward function you write does not need to encode the task objective.

Relevant task spaces:
The agent’s option/subtask (referred to as self.pnp_hl_actions in the code) space consists of picking up and placing the two types of

objects. Each option takes multiple action steps to complete. Taking a ’pick’ option means that the agent will navigate to an object

and pick it up. Taking a ’place’ option means that the agent will navigate to the delivery location and place the object there. Note

that the agent has to first go to the object to pick it up before placing the object. The agent’s action (referred to as self.pnp_ll_actions

in the code) space consists of the primitives for: moving forward, rotating left, rotating right, picking up the closest object, and

placing a held object in receptacle. The agent can only perform the low level pick or place primitive only if the agent is close enough

to an object or a receptacle.

User preference:
The agent should avoid the stool in the environment both when it is on its way to pick up an egg and place an egg down. More

specifically, the agent should be penalized when it is within 1.5 meters of the stool. However, the agent does not need to avoid the

stool when it is on its way to pick up an apple or place an apple down.

Additional info:
You need to write a reward function to encode this user preference. The preference function you write will be used together with

the task reward to train the agent. Please make sure NOT to make the reward function stateful (i.e. you should not use function

attributes or global variables). You should also not write any other helper functions.

Flat
Task description:
The task objective is to pick up all apples and eggs on the dining table and place them in the sink. In the task reward, the agent gets

a reward of +10 after it successfully picks up an object and places it in the sink, and a step cost of -0.1 for each time step taken. The

reward function you write does not need to encode the task objective.

Relevant task spaces:
The agent’s action (referred to as self.pnp_ll_actions in the code) space consists of the primitives for: moving forward, rotating left,

rotating right, picking up the closest object, and placing a held object in receptacle. The agent can only perform the low level pick

or place primitive only if the agent is close enough to an object or a receptacle.

User preference:
The agent should avoid the stool in the environment both when it is on its way to pick up an egg and place an egg down. More

specifically, the agent should be penalized when it is within 1.5 meters of the stool. However, the agent does not need to avoid the

stool when it is on its way to pick up an apple or place an apple down. In addition, the agent should pick up an object type that’s

different from the previously placed object type, as long as there are objects of the other type on the table need to be picked.

Additional info:
You need to write a reward function to encode this user preference. The preference function you write will be used together with the

task reward to train the agent. It can take up to 30 steps to reach an object and pick it up, or to reach the sink and drop it off. Make

sure your reward scaling gives the preference for alternating objects much more weight than the negative step rewards, but still

lower than the positive task reward. Please make sure NOT to make the reward function stateful (i.e. you should not use function

attributes or global variables.) You should also not write any other helper functions.

Prompt 4: User Prompt for Kitchen

The Python environment is

'''
Background:
1) Ingredients:
class Ingredients(Enum):

empty = 0
tomato = 1
onion = 2
lettuce = 3

2) Salad types:
class SoupType(Enum):

no_soup = 0
alice = 1
bob = 2
cathy = 3
david = 4

3) All available options:
{'Chop Tomato': 0, 'Chop Lettuce': 1, 'Chop Onion': 2,
'Prepare David Ingredients': 3, 'Plate David Salad': 4}

4) All available actions:
{0: (0, -1),
1: (0, 1),
2: (1, 0),
3: (-1, 0),
4: (0, 0)}
If the agent is standing next to a counter, performing an action in the
direction of the counter interacts with the counter.
For example, if the agent is standing under a counter, performing action 0
(goes up) interacts with the counter above the agent.
'''

import gymnasium as gym

class OvercookedSimple(gym.Env):

def get_plain_state(self, raw_info):
'''
The output of this function will be the input state in the generated reward
function.

The state is a dictionary that maps object names to their locations on the
map.

If the object 'obj' is at location (x, y), then state['obj'][y, x] == 1.
Otherwise, state['obj'][y, x] == 0.
'''
num_rows = self.world_size[1]
num_cols = self.world_size[0]
state_dict = {}

Process Grid Squares Map
GRIDSQUARES = [

"Floor", "Counter", "Cutboard", "Bin", "Pot", "FreshTomatoTile",
"FreshOnionTile", "FreshLettuceTile", "PlateTile"

]
gridsquares_map = raw_info['gridsquare']
for gridsquare_type in GRIDSQUARES:

grid_map = gridsquares_map[gridsquare_type].T
assert grid_map.shape == (num_rows, num_cols)
state_dict[gridsquare_type] = grid_map

Process Object Map
OBJECTS = ['FreshTomato', 'FreshLettuce', 'FreshOnion'] + [

'ChoppingTomato', 'ChoppingOnion', 'ChoppingLettuce'
] + ['ChoppedTomato', 'ChoppedOnion', 'ChoppedLettuce'] + ['Plate']
objects_map = raw_info['objects']
for obj_type in OBJECTS:

obj_map = objects_map[obj_type].T

assert obj_map.shape == (num_rows, num_cols)
state_dict[obj_type] = obj_map

Process Agent Map
agent_map = raw_info['agent_map']['agent-1'].T
assert agent_map.shape == (num_rows, num_cols)
state_dict['agent'] = agent_map

return state_dict

Write a reward function for the following task:

The LLM receives one of the prompts below, chosen according to the reward function we want it to design. The prompt for each setting is
identical except for (1) descriptions of relevant task spaces (e.g., the flat-reward prompt omits the options space description) and (2) the
behavioral specification (“user preference”) string.

High-Level
Task description:
The task objective is to prepare one David’s salad with three ingredients: onion, lettuce, and tomatoes. To make this salad, the agent

needs to: a. Chop ingredients (onion, lettuce, and tomatoes). Only one ingredient of each type is needed to complete the salad. b.

Combined chopped ingredients. c. Plate the salad. The task reward already encodes the task objective. In the task rewrd, the agent

receives a reward of +1 when it completes a salad, and a step cost of -0.01 for each time step taken. The reward function you write

does not need to encode the task objective.

Relevant task spaces:
The agent’s option (subtask) space consists of macro cooking actions, such as ’Chop Onion’ and ’Plate David Salad’. Each option

takes multiple action steps to complete.

User preference:
The agent should chop an onion after it chops a tomato, and the agent should chop a lettuce after it chops an onion. If the ingredients

are already chopped or a combined salad already exists, the agent should not chop more ingredients. The mixing order of the

ingredients does not matter.

Additional info:
You need to write a reward function to encode this user preference. The preference function you write will be used together with

the task reward to train the agent. Please make sure NOT to make the reward function stateful (i.e. you should not use function

attributes or global variables.) You should also not write any other helper functions.

Flat
Task description:
The task objective is to prepare one David’s salad with three ingredients: onion, lettuce, and tomatoes. To make this salad, the agent

needs to: a. Chop ingredients (onion, lettuce, and tomatoes). Only one ingredient of each type is needed to complete the salad. b.

Combined chopped ingredients. c. Plate the salad. The task reward already encodes the task objective. In the task reward, the agent

receives a reward of +1 when it completes a salad, and a step cost of -0.01 for each time step taken. The reward function you write

does not need to encode the task objective.

Relevant task spaces:
The agent’s action (low-level action) space consists of moving in the four cardinal directions (up, down, left, right) and idle. When

an agent is standing next to a counter, performing an action in the direction of the counter interacts with the counter.

User preference:
The agent should chop an onion after it chops a tomato, and the agent should chop a lettuce after it chops an onion. If the ingredients

are already chopped or a combined salad already exists, the agent should not chop more ingredients. The mixing order of the

ingredients does not matter.

Additional info:
You need to write a reward function to encode this user preference. The preference function you write will be used together with

the task reward to train the agent. Please make sure NOT to make the reward function stateful (i.e. you should not use function

attributes or global variables.) You should also not write any other helper functions.

D.5 Example LLM-Generated Rewards
Here, we provide examples of high-level, low-level, and flat rewards generated using the prompts from the previous section.

D.5.1 Rescue World

Example Flat Preference Reward for Rescue World

def get_flat_sa_pref_gpt(state: Dict, action: int) -> Tuple[float, Dict[str, float]]:
'''
state: the current state of the environment.
action: the (low-level) action that the agent is about to perform in the current state.
'''
current_pos = state['pos']
current_map = state['map']
current_holding = state['holding']
recently_delivered = -1 # To be inferred from context; assuming function is aware of last delivery
reward = 0.0
reward_components = {

'consistency_bonus': 0.0,
'danger_zone_penalty': 0.0

}

Reward consistency in type picking
if action == rw4t_utils.RW4T_LL_Actions.pick.value:

Get the object type at current position
object_type = current_map[current_pos[1], current_pos[0]]

Check if the object type is the same as the recently delivered one
if object_type == recently_delivered:

reward += 1.0 # Encourage same type pick
reward_components['consistency_bonus'] += 1.0

Penalize entering yellow zones when holding an object
if current_holding != rw4t_utils.Holding_Obj.empty.value:

Calculate the next position based on the action taken
next_pos = current_pos.copy()
if action == rw4t_utils.RW4T_LL_Actions.go_up.value:

next_pos[1] -= 1
elif action == rw4t_utils.RW4T_LL_Actions.go_down.value:

next_pos[1] += 1
elif action == rw4t_utils.RW4T_LL_Actions.go_left.value:

next_pos[0] -= 1
elif action == rw4t_utils.RW4T_LL_Actions.go_right.value:

next_pos[0] += 1

Ensure the next position is within bounds
if (0 <= next_pos[0] < current_map.shape[1]) and (0 <= next_pos[1] < current_map.shape[0]):

next_area_type = current_map[next_pos[1], next_pos[0]]
if next_area_type == rw4t_utils.RW4T_State.yellow_zone.value:

reward -= 1.0 # Penalize for entering a danger zone
reward_components['danger_zone_penalty'] -= 1.0

return reward, reward_components

Example Low-Level Preference Reward for Rescue World

def get_low_level_pref_gpt(state: Dict, option: int, action: int) -> Tuple[float, Dict[str, float]]:
'''
state: the current state of the environment.
option: the option (subtask) selected by the agent in the current state.

action: the action that the agent is about to perform in the current state.
'''

reward = 0.0
reward_components = {}

Extract necessary information from the state
agent_pos = state['pos']
map_state = state['map']
current_cell = map_state[agent_pos[1], agent_pos[0]]

Check if the agent is in a danger zone (yellow zone)
is_in_yellow_zone = current_cell == rw4t_utils.RW4T_State.yellow_zone.value

Determine if the current option is a delivery option
is_delivery_option = option in [

rw4t_utils.RW4T_HL_Actions_EZ.deliver_circle.value,
rw4t_utils.RW4T_HL_Actions_EZ.deliver_square.value

]

Apply a penalty if the agent is delivering and currently in a yellow zone
if is_delivery_option and is_in_yellow_zone:

danger_zone_penalty = -5.0 # User defined penalty
reward += danger_zone_penalty
reward_components['danger_zone_penalty'] = danger_zone_penalty

else:
reward_components['danger_zone_penalty'] = 0.0

No additional reward for being outside danger zones
return reward, reward_components

Example High-level Preference Reward for Rescue World

def get_high_level_pref_gpt(state: Dict, prev_option: int, option: int) -> Tuple[float, Dict[str, float]]:
'''
state: the current state of the environment.
prev_option: the last option (subtask) executed by the agent to reach the current state.
option: the option (subtask) the agent is about to perform in the current state.
'''

reward = 0.0
reward_components = {}

Determine the type of the previous and current option
prev_pick_type = None
curr_pick_type = None

if prev_option == rw4t_utils.RW4T_HL_Actions_EZ.deliver_circle.value:
prev_pick_type = rw4t_utils.RW4T_State.circle.value

elif prev_option == rw4t_utils.RW4T_HL_Actions_EZ.deliver_square.value:
prev_pick_type = rw4t_utils.RW4T_State.square.value

if option == rw4t_utils.RW4T_HL_Actions_EZ.go_to_circle.value:
curr_pick_type = rw4t_utils.RW4T_State.circle.value

elif option == rw4t_utils.RW4T_HL_Actions_EZ.go_to_square.value:
curr_pick_type = rw4t_utils.RW4T_State.square.value

Count remaining objects of each type on the map
circle_count = (state['map'] == rw4t_utils.RW4T_State.circle.value).sum()
square_count = (state['map'] == rw4t_utils.RW4T_State.square.value).sum()

Add preference reward based on the user preference
if prev_pick_type is not None:

if curr_pick_type == prev_pick_type:
if (curr_pick_type == rw4t_utils.RW4T_State.circle.value and circle_count > 0) or \

(curr_pick_type == rw4t_utils.RW4T_State.square.value and square_count > 0):
reward += 5.0 # Reward for picking the same type if available
reward_components['same_type_pick_bonus'] = 5.0

else:
reward_components['same_type_pick_bonus'] = 0.0

else:
reward_components['same_type_pick_bonus'] = 0.0

return reward, reward_components

D.5.2 iTHOR

Example Flat Preference Reward for iTHOR

def get_flat_sa_pref_gpt(state: Dict, action: int) -> Tuple[float, Dict[str, float]]:
"""
Computes the user preference reward based on agent's proximity to the stool
and preferences for alternating object types during the pickup/drop process.

state: the current state of the environment.
action: the current action the agent is performing.
"""
reward = 0.0
reward_components = {

'stool_penalty': 0.0,
'alternating_bonus': 0.0

}

Agent and stool position
agent_pos = state['agent_pos']
stool_pos = state['stool_pos']

Calculate distance to stool
distance_to_stool = np.linalg.norm(np.array(agent_pos) - np.array(stool_pos))

If the agent is close to the stool while dealing with eggs, apply penalty
dealing_with_eggs = (state['egg_1_state'] in [0, 1] or state['egg_2_state'] in [0, 1])
if dealing_with_eggs and distance_to_stool < 1.5:

reward -= 2.0 # Penalize for being too close to the stool
reward_components['stool_penalty'] = -2.0

Check if the action is a pickup or drop intention
if action in [PnP_LL_Actions.index("PickupNearestTarget"), PnP_LL_Actions.index("PutHeldOnReceptacle")]:

Determine last placed object type to encourage alternating pick-up
last_picked = 'apple' if (state['apple_1_state'] == 2 or state['apple_2_state'] == 2) else 'egg'
available_apples = (state['apple_1_state'] == 0 or state['apple_2_state'] == 0)
available_eggs = (state['egg_1_state'] == 0 or state['egg_2_state'] == 0)

if last_picked == 'apple' and available_eggs:
reward += 5.0 # Encourage picking eggs if last placed was apple
reward_components['alternating_bonus'] = 5.0

elif last_picked == 'egg' and available_apples:
reward += 5.0 # Encourage picking apples if last placed was egg
reward_components['alternating_bonus'] = 5.0

return reward, reward_components

Example Low-Level Preference Reward for iTHOR

def get_low_level_pref_gpt(state: Dict, option: int, action: int) -> Tuple[float, Dict[str, float]]:
'''
state: the current state of the environment.
option: the option (subtask) selected by the agent in the current state.
action: the action that the agent is about to perform in the current state.
'''

Define rewards and thresholds
stool_penalty = -2.0 # Penalty for being too close to the stool
stool_avoidance_radius = 1.5 # Distance within which to penalize for being too close to the stool

Initialize preference reward and its components
reward = 0.0
reward_components = {"stool_avoidance_penalty": 0.0}

Get stool and agent positions
stool_pos = np.array(state["stool_pos"])
agent_pos = np.array(state["agent_pos"])

Calculate distance between agent and stool
dist_to_stool = np.linalg.norm(agent_pos - stool_pos)

Determine if the current option involves interacting with eggs
interacting_with_egg = option in {PnP_HL_Actions.pick_egg.value, PnP_HL_Actions.drop_egg.value}

Apply penalty if the agent is too close to the stool and dealing with eggs
if interacting_with_egg and dist_to_stool < stool_avoidance_radius:

reward += stool_penalty
reward_components["stool_avoidance_penalty"] = stool_penalty

return reward, reward_components

Example High-level Preference Reward for iTHOR

def get_high_level_pref_gpt(state: Dict, prev_option: int, option: int) -> Tuple[float, Dict[str, float]]:
Initialize reward and components
preference_reward = 0.0
reward_components = {

"alternation_bonus": 0.0,
"not_alternate_penalty": 0.0

}

Determine the type of object just placed and the type to pick
if prev_option == PnP_HL_Actions.drop_apple.value:

last_placed_type = "apple"
elif prev_option == PnP_HL_Actions.drop_egg.value:

last_placed_type = "egg"
else:

last_placed_type = None

if option == PnP_HL_Actions.pick_apple.value:
current_pick_type = "apple"

elif option == PnP_HL_Actions.pick_egg.value:
current_pick_type = "egg"

else:
current_pick_type = None

Check items state to determine if alternation is possible
remaining_apples = state["apple_1_state"] == 0 or state["apple_2_state"] == 0
remaining_eggs = state["egg_1_state"] == 0 or state["egg_2_state"] == 0

Encourage alternating picking
if last_placed_type and current_pick_type:

if last_placed_type != current_pick_type:
Give a bonus for alternating types
preference_reward += 8.0 # Scaled to be significant but less than the task completion reward
reward_components["alternation_bonus"] = 8.0

elif (current_pick_type == "apple" and remaining_eggs) or (current_pick_type == "egg" and remaining_apples):
Apply a penalty if not alternating but possible
preference_reward += -2.0
reward_components["not_alternate_penalty"] = -2.0

return preference_reward, reward_components

D.5.3 Kitchen

Example Flat Preference Reward for Kitchen

def get_flat_sa_pref_gpt(state: Dict, action: int) -> Tuple[float, Dict[str, float]]:
'''
state: the current state of the environment.
action: the (low-level) action that the agent is about to perform in the current state.
'''
Define a map for action directions
action_effect_map = {

0: (0, -1), # move up
1: (0, 1), # move down
2: (1, 0), # move right
3: (-1, 0), # move left
4: (0, 0) # idle

}

reward = 0.0
reward_components = {

'tomato_chopped': 0.0,
'onion_chopped': 0.0,
'lettuce_chopped': 0.0

}

Check positions of chopped ingredients
chopped_tomato_exists = state['ChoppedTomato'].any()
chopped_onion_exists = state['ChoppedOnion'].any()
chopped_lettuce_exists = state['ChoppedLettuce'].any()

Calculate agent's new position based on the action
agent_pos = state['agent'].argmax()
agent_y, agent_x = divmod(agent_pos, state['agent'].shape[1])
dy, dx = action_effect_map[action]
new_pos = (agent_y + dy, agent_x + dx)

Check if the agent is chopping at the new position
is_near_cutboard = state['Cutboard'][new_pos] == 1
chopping_tomato_active = is_near_cutboard and state['ChoppingTomato'][new_pos] == 1
chopping_onion_active = is_near_cutboard and state['ChoppingOnion'][new_pos] == 1
chopping_lettuce_active = is_near_cutboard and state['ChoppingLettuce'][new_pos] == 1

Add preference rewards
if chopping_tomato_active and not chopped_tomato_exists:

reward_components['tomato_chopped'] += 0.1 # Encourage chopping tomato
if chopped_tomato_exists and chopping_onion_active and not chopped_onion_exists:

reward_components['onion_chopped'] += 0.2 # Encourage chopping onion after chopping tomato

if chopped_onion_exists and chopping_lettuce_active and not chopped_lettuce_exists:
reward_components['lettuce_chopped'] += 0.3 # Encourage chopping lettuce after chopping onion

reward = sum(reward_components.values())

return reward, reward_components

Example High-level Preference Reward for Kitchen

def get_high_level_pref_gpt(state: Dict, prev_option: int, option: int) -> Tuple[float, Dict[str, float]]:
'''
state: the current state of the environment.
prev_option: the last option (subtask) executed by the agent to reach the current state.
option: the option (subtask) the agent is about to perform in the current state.
'''

reward = 0.0
reward_components = {

"onion_after_tomato": 0.0,
"lettuce_after_onion": 0.0,
"avoid_extra_chop": 0.0,

}

Define option indices for ease of reference
CHOP_TOMATO = 0
CHOP_LETTUCE = 1
CHOP_ONION = 2

Check for chopped states
tomato_chopped = state['ChoppedTomato'].any()
onion_chopped = state['ChoppedOnion'].any()
lettuce_chopped = state['ChoppedLettuce'].any()

User preferences
if prev_option == CHOP_TOMATO and option == CHOP_ONION:

reward += 0.5
reward_components["onion_after_tomato"] = 0.5

if prev_option == CHOP_ONION and option == CHOP_LETTUCE:
reward += 0.5
reward_components["lettuce_after_onion"] = 0.5

Avoid chopping ingredients again if they are already chopped
if (option == CHOP_TOMATO and tomato_chopped) or \

(option == CHOP_ONION and onion_chopped) or \
(option == CHOP_LETTUCE and lettuce_chopped):
reward -= 1.0
reward_components["avoid_extra_chop"] = -1.0

return reward, reward_components

E User Study Details
E.1 Experiment Protocol
We conducted a user study to evaluate how well agent policies trained with hierarchical rewards (experimental group) generated by language

models are perceived to align with given behavioral specifications compared to those trained with flat rewards (control group), also generated

using language models. Each participant was randomly assigned to either the Rescue World or Kitchen domain.

(1) Consent and Study Overview. Participants were first presented with a detailed overview of the study, including its purpose, procedures,

and any potential risks. An IRB-approved consent form was provided, and participants were required to give informed consent before

proceeding.

(2) Demographic Questionnaire. After providing consent, participants completed a brief demographic questionnaire, where we asked for

their age and sex.

(3) Domain Introduction. Participants were introduced to the assigned domain through textual descriptions accompanied by screenshots.

This step was designed to ensure that they had sufficient context to understand the environment and the tasks performed by the agent.

(4) Presentation of Behavioral Specifications and Attention Checks. Next, participants were shown the behavioral specifications the

agent was expected to follow. To ensure they carefully read these specifications, we included attention check questions. For example, in

the Rescue World domain, where the agent must handle two object types (food and medical kits) and may encounter avoid danger zones

(marked by yellow grids), part of the safety specification states that the robot should “avoid yellow danger zones when it is delivering an

object”. We asked participants, whether according to the specifications, it would be considered safe for the robot to “go through danger

zones while delivering food”. While participants were not required to answer these questions correctly to proceed, we filtered out all

responses with incorrect answers during data analysis to ensure data quality.

(5) Video Evaluation. To ensure consistent evaluation, only policies that successfully completed the task were shown. Additionally, to

control for variability, all videos shown to a participant were drawn from policies trained with the same random seed, although they could

originate from different reward candidates. In the Rescue World domain, each participant viewed 6 videos: 3 showing policies trained

with flat rewards 𝑟 𝑓 𝑙𝑎𝑡 and 3 showing policies trained with hierarchical rewards (𝑟𝐻 , 𝑟𝐿). In the Kitchen domain, participants viewed 4

videos: 2 per reward method. Fewer videos were shown in this domain because, in some cases, only 2 out of 8 flat reward candidates

produced policies capable of successfully completing the task. Questions for each video appeared on the same page, and participants

were allowed to replay the videos as many times as they wished. After each video, participants first answered a multiple-choice question

to verify they had watched the video (e.g., “What order did the robot deliver the objects in?”). They were then asked to rate how well

the agent’s behavior aligned with the specified behaviors using a 5-point scale, with 1 indicating “least aligned” and 5 indicating “most

aligned”. Participants could optionally provide any comments explaining their ratings.

(6) Final Feedback and Compensation. At the end of the study, participants were invited to leave any additional feedback about their

experience. On average, participants took 14.2 minutes to complete the study (SD = 8.7 minutes). All participants who completed the full

study were compensated $3 for their time.

E.2 Participants
We conducted the user study on Prolific, recruiting a total of 40 participants from the United States. After applying attention check filters,

we obtained usable data from 30 participants, with 15 participants assigned to each domain. Among these 30 participants, the youngest was

20, the oldest was 67, and the median age was 35. The sex distribution was fairly balanced, with 14 female participants, 15 male participants,

and 1 participant identifying as “non-binary / third gender.”

E.3 Data Analysis
We filtered out data from participants who incorrectly answered the attention check questions about the behavioral specifications. For

participants who passed the attention checks, if they answered a video content question incorrectly, we excluded their ratings for that

specific video but retained their responses for other videos.

To generate Fig. 7, we computed the average rating each participant assigned to Flat and Hier policies, and then aggregated these

per-participant means to report group-level comparisons. Since each participant evaluated both Flat and Hier policies trained with the

same random seed, we used the Wilcoxon Signed-Rank test to assess the statistical significance of the observed rating differences [23]. All

reported results are based on the filtered dataset, with the final sample sizes specified in the Participants section.

F Code Availability and Release
An anonymized folder containing the source code developed for this project is available at https://anonymous.4open.science/r/hierarchical_

reward_design-88B3/.

https://anonymous.4open.science/r/hierarchical_reward_design-88B3/
https://anonymous.4open.science/r/hierarchical_reward_design-88B3/
https://anonymous.4open.science/r/hierarchical_reward_design-88B3/
https://anonymous.4open.science/r/hierarchical_reward_design-88B3/

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Hierarchical Reinforcement Learning
	2.2 Reward Design

	3 Hierarchical Reward Design
	3.1 Low‑level and High-level Reward Models
	3.2 The HRD Problem
	3.3 Hierarchical Reward Design from Language

	4 Language to Hierarchical Rewards (L2HR)
	4.1 LLM Prompting Strategy
	4.2 Training Procedure

	5 Experiments
	5.1 Baselines
	5.2 Domains
	5.3 Numerical Experiments
	5.4 Evaluations with Human Participants

	6 Conclusion
	References
	A Further Discussion of Related Work
	B Theoretical Analysis
	B.1 Low- and High-Level Decision Models
	B.2 Policy Learning with Hierarchical Rewards
	B.3 Expressivity of HRD

	C Language to Hierarchical Rewards (L2HR) Pseudocode
	D Experimental Details
	D.1 Further Domain Details
	D.2 Results with Expert-Provided Rewards
	D.3 Training Setup
	D.4 LLM Prompts
	D.5 Example LLM-Generated Rewards

	E User Study Details
	E.1 Experiment Protocol
	E.2 Participants
	E.3 Data Analysis

	F Code Availability and Release

