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ABSTRACT

When training Al agents to perform tasks, humans often care not
only about whether a task is completed but also how it is performed.
As agents tackle increasingly complex tasks, aligning their behavior
with human-provided specifications becomes critical for responsi-
ble Al deployment. Reward design provides a direct channel for such
alignment by translating human expectations into reward functions
that guide reinforcement learning (RL). However, existing methods
are often too limited to capture nuanced human preferences that
arise in long-horizon tasks. Hence, we introduce Hierarchical
Reward Design for Language (HRDL): a problem formulation
that extends classical reward design to encode richer behavioral
specifications for Hierarchical RL agents. We further propose Lan-
guage to Hierarchical Rewards (L2HR), our proposed solution
to HRDL. Human subject and numerical experiments show that
Hierarchical RL agents trained with rewards designed via LZHR
not only complete tasks effectively but also better adhere to human
specifications. Together, HRD and L2HR advance the research on
human-aligned AI agents.
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1 Introduction

Al agents are being deployed in human-centric environments such
as homes, hospitals, and disaster zones [19, 29, 49, 56, 66]. Their
usefulness depends not only on accomplishing tasks, but on doing
so in ways that respect human intentions, operational rules, and
safety requirements (henceforth collectively referred to as behavior
specifications). Aligning agent behavior with these specifications is
central to safe and responsible Al deployment. Prior research has
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explored a range of approaches for conveying such specifications
to agents [12]. In this work, we focus on the paradigm of reward
design, which provides a direct way for humans to convey such
specifications by translating them into reward signals that guide
reinforcement learning (RL).

As Al agents take on increasingly complex, long-horizon tasks,
more advanced reward design methods are needed to capture equally
complex specifications. Humans rarely teach or think about tasks
and associated specifications as monolithic goals [9, 10, 13, 30, 41,
53]. Instead, we naturally break them into subtasks: “first prepare
the ingredients, then cook, then serve” Hierarchical frameworks in
RL mirror this structure by decomposing tasks into subtasks and
organizing them over long horizons [14, 15, 50, 64].

Research Gap. This hierarchical approach to policy learning has
enabled agents to complete tasks of increasingly longer horizons.
However, the reward design for these hierarchical RL agents remains
largely unexplored, thereby limiting alignment of agent behavior
with human specifications in long-horizon tasks. As illustrated in
Fig. 1, specifications for long-horizon tasks often include details on
what subtasks to perform, in which order, and how they are exe-
cuted. Existing reward design methods encode these specifications
via a flat reward function of the form 74 (s, a). We show both
theoretically and empirically that flat rewards are fundamentally
limited in capturing specifications for long-horizon tasks.

Summary of Contributions. To address this limitation,

e We introduce the Hierarchical Reward Design (HRD) problem,
which enables designers to express behavioral specifications in-
spired by the same structured way people naturally think and
teach. Unlike the classical (flat) reward design problem [57], HRD
admits reward solutions that enables encoding of complex speci-
fications for long-horizon tasks, capturing both what subtasks to
perform and how to execute them. HRD is a general formulation
that can be instantiated with multiple input modalities, analogous
to how flat reward design has been realized via proxy signals or
language [20, 34, 39]. Because natural language is an intuitive
medium for specifying layered instructions, we then provide a
language-based instantiation called Hierarchical Reward Design
from Language (HRDL, pronounced “hurdle”).

e We prove that hierarchical rewards of HRDL are strictly more
expressive than flat rewards used by prior works, while remain-
ing compatible with standard decision-making frameworks (i.e.
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Figure 1: This work introduces the Hierarchical Reward Design from Language (HRDL) problem. Unlike prior work on reward
design, HRDL decomposes reward design into low- and high-level components (77, 7y). Language to Hierarchical Rewards
(L2HR), our proposed solution to HRDL, leverages language models to guide the synthesis of these hierarchical rewards,
enabling existing RL algorithms to train agents that are better aligned with human specifications.

Markov and semi-Markov Decision Processes) and reinforcement
learning algorithms.

e We present Language to Hierarchical Rewards (L2HR), an ini-
tial solution to HRDL that generates hierarchical rewards directly
from natural language specifications, making reward design more
accessible while leveraging the reasoning capabilities of large lan-
guage models [2, 24, 37]. L2HR produces reward structures that
guide both high-level subtask selection and low-level execution.

Through human subject and numerical experiments, we demon-
strate the advantages of hierarchical over flat reward design. We
show that hierarchical reward design (coupled with hierarchical
RL) allows Al agents to not only successfully complete tasks but
also better align their behavior with language specifications. We
view this work as an initial but important step toward aligning
Al systems with human expectations through the lens of HRD.
Through theoretical analysis and empirical findings, this paper lays
the groundwork for future research on designing human-aligned
reward structures that employ hierarchies and human input.

2 Background and Related Work

We focus on Al agents tasked with problems that can be modeled
as Markov Decision Processes (MDPs) [52], defined by the tuple
M= (S, AT,r,y,h). Here, S and A denote the state and action
spaces, T(s’[s, a) the transition dynamics, and r(s, a) the immediate
reward. The discount factor y € [0, 1] trades off immediate and
future rewards, and h is the horizon. The objective of reinforce-
ment learning (RL) is to find a policy n(als) that maximizes the
expected discounted return Eg, 7,4, [Z?:o y'r(ss, a;)]. MDPs pro-
vide a flexible framework for modeling a wide range of sequential
tasks, including those tackled by virtual agents and robotic assis-
tants. MDPs can be solved using reinforcement learning, which
provides an approach to computing the optimal policy that maxi-
mizes the expected cumulative discounted reward [63].

2.1 Hierarchical Reinforcement Learning

While capable, RL algorithms find it challenging to solve long-
horizon tasks. Hierarchical RL (HRL) seeks to solve MDPs with long
horizons by decomposing them into simpler subtasks [14, 15, 50, 64].
A widely adopted HRL paradigm is the options framework [5, 64, 71],

where the agent has access to a discrete set of temporally-extended
behaviors called options, denoted as O. Each option o € O corre-
sponds to an intra-option policy given by 7y (als, 0) and a termi-
nation condition f(s,07). A high-level policy mr(olo~,s) selects
which option to execute, and the corresponding low-level policy
71, generates primitive actions until the selected option terminates.
The reward model for options computes the expected cumulative
reward until an option terminates. Following [64], we let E(o, s, t)
denote the event where option o is initiated in state s at timestep ¢,
and define the option-level reward as:

Topt(5,0) = E[ZE ¥ iy | E(0,5,1)] (1)

where k is the random variable denoting number of steps after
which the initiated option o terminates, determined by its termina-
tion condition S.

Another line of HRL research follows the feudal/goal-conditioned
framework [14, 27, 33, 43, 65], which also decomposes a task into
subtasks but differs in how the hierarchical policies are trained
and how reward signals are assigned. In this framework, the high-
level manager selects subgoals and receives a task reward, as in the
options framework. However, unlike the options framework, the
low-level worker receives a separate pseudo-reward Tp (s, 0, a) that
measures progress toward achieving the current subgoal.

2.2 Reward Design

A core challenge in using MDPs and RL is reward design [57, 63].
Given a well-designed reward function, agents can use RL/HRL
algorithms to solve the MDP. However, in practice, the design of a
reward function is non-trivial and can lead to a host of problems,
including poor alignment between humans and agents [4].

2.2.1 Reward Design Problem. To formally study reward design,

Singh et al. introduce the (flat) Reward Design Problem (RDP) [57].

RDP is formalized as a tuple P = (Mp, R, ﬂMp, F), where

o My, =(8,A,T,y,h) is the world model;

e R is the space of reward functions;

® Am,(r) : R — Il is an algorithm to compute policy 7 : S —
A(A) that optimizes reward r € R in the MDP (M,, r);

e F:II — Ris the fitness function that produces a scalar evalua-
tion of a policy, only accessible via policy queries.
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Figure 2: Although prior works have utilized multi-level re-
wards to train hierarchical agents, the design of such rewards
remains underexplored and lacks a concrete problem formu-
lation. This work seeks to bridge this gap.

In an RDP, the goal is to output a reward function r € R such
that the policy  := A m,, (r) that optimizes r achieves the highest
Fitness score F(r).

Rather than treating the reward as fixed and exogenous, RDP
reframes reward design as a search problem, a perspective that has
profoundly shaped subsequent research. It inspired methods that
optimize or evolve reward functions directly [46, 60] as well as
formulations that infer or generate them from indirect signals, such
as Inverse Reward Design [20], which recovers true rewards from
proxy rewards, and Eureka [39], which synthesizes executable re-
wards from natural language. Many other paradigms can be viewed
as RDP instantiations: inverse reinforcement learning [1, 17, 22, 72]
treats expert behavior as evidence for the reward search, while
preference-based learning [7, 54] and RLHF [6, 48] extend this to
human feedback.

2.2.2  Rewards Design for Hierarchical RL. Collectively, RDP pro-
vides a unifying framework that has catalyzed advances in both
reinforcement learning and human-AI alignment; however, it does
not explicitly consider hierarchical RL. Many prior works have ex-
plored the use of hierarchical rewards, from early studies in feudal
reinforcement learning [14] and precursors to the options frame-
work [59] to more recent advances in deep HRL [33, 43, 65]. While
these works often assume access to hierarchical rewards for train-
ing agents to complete tasks, the problem of designing such
hierarchical rewards has received little attention and, to our
knowledge, has yet to be formally defined as a concrete re-
search problem.

A literature search using the keywords “hierarchical reward de-
sign” primarily returns domain-specific studies that discuss how
using hierarchical rewards enables solving application-level prob-
lems, such as fleet management [11, 25, 44, 45]. Other works either
employ the term “hierarchy” in different contexts (for example,
to express the relative importance of multiple reward signals [36]
or sequential action constraints without explicitly modeling sub-
tasks [28]) or focus on narrower scopes, such as learning hierarchi-
cal rewards specifically from demonstrations [62].

Since no previous work formally defines hierarchical reward de-
sign as a general problem, there is a lack of consistent language and
theoretical foundation for studying it, unlike the well-established
Reward Design Problem [57]. This work addresses this gap by
formalizing the Hierarchical Reward Design (HRD) problem and
introducing a reward structure that is hierarchical, compact, and
capable of capturing nuanced behavioral specifications for both
what subtasks to select and how to execute them.

Fust as RDP lays the groundwork for studying algorithmic reward
design in flat settings, we posit that HRD will provide a principled
foundation for reasoning about hierarchical reward structures. In
line with the research that originated from RDP, we anticipate that
HRD will enable a broad range of problem instantiations (of reward
design with different types of human inputs) and solution methods
for designing hierarchical rewards. A Venn diagram illustrating
how this work relates to prior research on hierarchical rewards and
reward design is shown in Figure 2.

2.2.3 Reward Design from Language. Early work addressing the
RDP focused on designing rewards for intrinsic motivation and
reward shaping [58, 60, 61]. More recently, research in this area
has explored aligning agent behavior more closely with human-
provided specifications, using learning or large language models
(LLMs) to infer and generate reward functions [20, 34]. In these
cases, the human or an oracle, either implicitly or explicitly, serves
as the fitness function by evaluating the policy. However, most
existing work on reward design or generation focuses exclusively
on non-hierarchical (flat) RL settings, producing reward functions of
the form rfy4: (s, a) or reya: (s) [8, 16, 20, 21, 34, 35, 39, 58, 60, 61, 68,
69]. While sufficient for certain behaviors, flat reward functions are
fundamentally limited when specifying complex preferences, such as
desired subtask sequences or option-conditioned execution strategies,
that naturally arise in long-horizon tasks.

To our knowledge, the only prior work that explicitly considers
a hierarchical setting is [40], though its focus differs substantially
from ours. Their approach does not formalize the hierarchical re-
ward design problem or analyze the expressivity gap between flat
and hierarchical formulations. Moreover, the rewards generated
by their LLMs are limited to task completion objectives and do
not capture behavioral specifications. In contrast, LZHR generates
both high- and low-level rewards that encode natural language
behavioral preferences while preserving task feasibility. !

3 Hierarchical Reward Design

This section formally introduces the Hierarchical Reward Design
(HRD) problem in the context of HRL, drawing insights from both
the options framework and the feudal framework. We begin by
defining the low- and high-level reward functions in HRD and
proceed to show that they naturally induce a family of MDPs at the
low-level and a semi-MDP (SMDP) at the high-level. Using these
insights, we formally define the general HRD problem and introduce
a specific instantiation, the Hierarchical Reward Generation from
Language (HRDL) problem, which we address in this paper. Proofs
and additional details for all propositions are provided in Appendix
Sec. B.1.

!Please see the Sec. A in the Appendix for a further discussion of related works.



3.1 Low-level and High-level Reward Models

DEFINITION 1 (LOW-LEVEL REWARD). The low-level reward is a
functionry : 8 X O X A — R, which provides feedback for selecting
a low-level action a € A in state s € S while pursuing option o € O.

Intuitively, 7. (s, 0, a) encodes specifications for how the agent
should execute the subtask associated with option o in state s.

PROPOSITION 1 (Low-LEVEL MDP MoDELs). Let M, = (S, A, T,y)
be a world model, O a set of options, andr;, : SXO XA — R
a low-level reward. For a fixed option o € O, the tuple My, =
(S, A, T,r.(-0,-), v, ho) defines an MDP, where h, is the horizon
determined by the option’s termination condition f(-, 0).

DEFINITION 2 (HIGH-LEVEL REWARD). The high-level reward is
a functionry : O X S x O — R, which specifies the expected reward
for executing option o € O until termination, given that o is initiated
in state s € S and the previous option waso~ € O.

The high-level reward rg(o~,s,0) encodes specifications for
what subtask should be executed, possibly conditioned on both
the current state and prior option. This allows for expressing pref-
erences over subtask ordering and dependencies between subtasks.

ProrosITION 2 (HIGH-LEVEL SMDP MODEL).
Let M, = (S5, A,T,y, h) be a world model, O a set of options, and
rg : O X8 x O — R the high-level reward. Then, My = (O X
S,0, Ty, ry, y, h) forms a semi-MDP, where Ty : O X S X O —
A(O x 8 x N) defines the joint distribution over the next augmented
state and transit time, where N is the set of natural numbers.

Alternatively, the high-level process can be modeled as a stan-
dard MDP when single-step high-level rewards are used. This flexi-
bility highlights that the HRD framework is compatible with both
semi-MDP and MDP formulations, allowing the use of a wide range
of existing RL algorithms. We provide the formal MDP definition
and corresponding proof in Sec. B.1 in the Appendix.

3.2 The HRD Problem

DEFINITION 3 (HIERARCHICAL REWARD DEsSIGN (HRD)). The Hi-
erarchical Reward Design (HRD) problem is defined by the tuple
P=(M,,O,R, AMy» F), where
o M, =(S,A,T,y,h) is the world model;

o O is a finite option set;
o R =Ry X Ry is the space of candidate reward structures, where

Rye={ry:0OXS8Xx0 >R} andRy ={rL : SXO XA — R};
o the learning routine Ay, (+) : R — Iy x I, maps each reward

pair (rg, ry) to a hierarchical policy (ry, 7)), where tgy : OXS —

A(O) optimizes ry in the high-level decision making model My

and iy : S X O — A(A) optimizes ry in each underlying MDP

My; and
o the fitness function F : Il X II, — R evaluates the quality of

hierarchical policies.

The goal of HRD is to find (7, [ ) = arg max(,y, r; )eR F(ﬂMp (ra,rp)).

Connections to Existing Algorithms. We show in Sec. B.2 that Ay,
can be instantiated with existing RL algorithms. In our implementa-
tion, the low-level policy 7, (a | s, 0) is trained with PPO [55] due to
its robustness in control, while the high-level policy g (o | 07, s)
uses DQN-style methods [42], following common practice in SMDP

formulations [5, 64]. Stronger structural assumptions on (rg, rr)
can enable the use of more specialized HRL algorithms. For in-
stance, if the low-level reward depends only on state and action,
rL(s,0,a) = rfiq (s, a), and the high-level reward rg is a single-step
reward constructed as Y., 'f1a; (s, @)L (als, 0), the problem reduces
to the two augmented MDPs formulation introduced in [71]. In
these cases, algorithms such as double actor-critic [71] and option-
critic [5] can be applied to learn hierarchical policies. A detailed
exploration of the connections between structural reward assump-
tions and the applicability of existing HRL algorithms for instanti-
ating A, is left for future work.

3.3 Hierarchical Reward Design from Language

As discussed in Sec. 1, real-world deployments often require agents
to satisfy additional behavioral specifications beyond task com-
pletion. In these cases, the task reward can typically be defined
once and reused across different behavioral contexts. In contrast,
additional rewards must be redesigned for each new behavior spec-
ification. While the cost of task reward design is amortized, the cost
of designing rewards that match human specifications grows lin-
early with the number of distinct behaviors desired. This motivates
the need for an automated approach to generate rewards to encode
behavioral specifications while reusing the existing domain dynam-
ics and task objectives. The challenge of this problem is twofold:
(1) The generated rewards should have distinct functional forms
- one guiding high-level option selection, and another governing
low-level action execution. (2) The generated rewards must remain
compatible with existing task rewards, ensuring that agents con-
tinue to achieve the original task objectives. We formally define
this as a specific instantiation of the HRD problem.

DEFINITION 4 (HIERARCHICAL REWARD DESIGN FROM LANGUAGE
(HRDL)). The HRDL problem is an instance of the HRD problem with
additional inputs: (1) a task reward functionr : SXA — R, (2) a sub-
task completion reward (pseudo-reward)r, : SXO XA — R, and (3)
behavior specificationsl € X", provided as a natural language descrip-
tion. | guides the reward generation during training, and the fitness
function F is accessible only during evaluation. The objective of HRDL
is to generate high- and low-level designed rewards, R* = (¥}, FL*) eR,
such that the resulting hierarchical policy (rj;, 7} ), trained under the
composite rewards (rop: + Ty rp + Ff) using AMm,, maximizes the
fitness score: (P}, F}) = arg maX s, 7 )eR F(.?{Mp (Fope +TH, Tp+71)).

If a non-hierarchical reward design method is used, the designed
reward has the flat form 7¢;4; (s, @). To integrate this flat reward
into the hierarchical setting, we must decompose it into high- and
low-level rewards:

rr(s,0,a) =1y(s,0,a) + Fiar (s, a) (2)
ru(S,0) =Topt(5,0) + Friarm(s, 0) ®3)

where a1 (5, 0) aggregates Friq (s, a) using the same expression
as Eq. 1. While flat designed rewards 74 (s, @) can encode some
behavior specifications, the definitions of high- and low-level re-
wards in HRD provide a significantly more expressive mechanism
for specifying agent behavior:

ro(s,0,a) =ry(s,0,a) + 7 (s,0,a) (4)

re(07,5,0) =ropi(s,0) +Fu(0~,s,0) (5)



In fact, the flat reward is a special case of hierarchically designed re-
wards, where 7L (s,0,a) = Fia: (s, a) and Fg(07,'5,0) = Friarm (s, 0).
The hierarchical formulation is strictly more general than the flat
formulation, offering greater expressiveness in the following ways:

PROPERTY 1. Certain specifications on sub-task selection can be
expressed through rg (s, 07, 0), but they cannot be expressed by flat
Sfunction: Friq (s, a).

PROPERTY 2. Certain specifications on sub-task execution can be
expressed through 71, (s, 0, a), but they cannot be expressed by flat
Sfunction: Friq:(s, a).

Proofs of these properties are provided in Appendix Sec. B.3. In
the following sections, we introduce an algorithm for generating
hierarchical rewards (7, 7) from natural language specifications
and empirically compare its performance against flat reward design
that generates alignment rewards of the form 74 (s, a).

4 Language to Hierarchical Rewards (L2HR)

We now present L2HR, an algorithm to solve HRDL that uses large
language models (LLMs) to generate reward functions directly from
natural language specifications. An illustration of L2HR’s input and
output is provided in Fig. 3.

4.1 LLM Prompting Strategy

To generate executable reward functions from natural language
specifications, we design a prompting strategy inspired by recent
works on code generation for reward design [39]. Unlike [39], our
prompting design is tailored for generating feasible reward func-
tions without relying on using fitness F to evaluate and iteratively
improve polices during training. More specifically, the LLM is pro-
vided with a structured prompt consisting of the following compo-
nents:

(1) Task Description: A natural language summary of the overall
task objective, including the approximate scale of the task re-
ward. The actual task reward code is intentionally withheld
— both to reflect realistic scenarios in which only the reward
signal (but not the code) is accessible and to prevent the LLM
from overfitting to specific implementation details.

(2) Environment Code Context: Extracted snippets of environment

source code that expose the state and action spaces without

leaking simulation internals. This follows the methodology

proposed in [39].

Relevant Action-Related Spaces: Descriptions of the option space

O and action space A, including the semantic role of each. We

include these descriptions to help the LLM correctly distinguish

between high-level and low-level decision spaces.

(4) Behavior Specification: A natural language string that describes
the desired agent behaviors beyond task completion.

(5) Formatting and Reward Design Tips: Brief coding guidelines,
such as avoiding defining new global variables, and recommen-
dations for balancing designed rewards with the underlying
task reward.

—
[SY)
=

4.2 Training Procedure

While LLMs can generate plausible reward code in a zero-shot
manner, code generation is inherently noisy: syntax errors, invalid

variable references, and runtime failures may occur. To address this
variability, we sample k reward candidates independently from the
LLM and apply a lightweight filtering process to ensure validity.
During filtering, we verify whether the code compiles without syn-
tax errors, and whether it references only permitted state, option,
and action variables exposed in the environment prompt. We find
that in practice, at least one sample in the batch passes these checks
and preserves task feasibility. As a result, we forego more complex
iterative refinement strategies, such as evolutionary search or “re-
ward reflection” [39], which would be challenging without fitness F
during training. However, we recognize this as an important future
direction; methods that incorporate feedback could further improve
the robustness of generated reward functions.

The full two-stage training algorithm L2HR is provided in Sec. C
of the Appendix. In the first stage, we use the LLM to generate
k candidate low-level alignment functions Fél), e, fék) from the
specification I. The low-level prompt differs from the high-level one
only in its description of the action space and level-specific behavior
specifications. Each féi) is then used to train a corresponding low-
level policy rrL(i) with the combined objective of pseudo-rewards

plus the LLM-generated Féi). Only the policies irL(i) that surpass a
predefined threshold of subgoal completion, based on cumulative
pseudo-rewards, are considered as valid.

In the second stage, we generate k candidate high-level align-
ment functions FI({U, o Fl(f)
cies nl({j ), each conditioned on a valid ﬂL(i) from the first stage. These
policies are optimized using with the combined objective of option-

and use them to train high-level poli-

level task reward plus the LLM-generated FI({j ) Then, we return all
designed rewards (FI({j )
(n(j ), ﬂL(i)) that achieve cumulative task rewards above a thresh-
old. This two-stage structure promotes modularity and allows for

selective reuse of subtask policies.

, Fii)) and corresponding trained policy pairs

5 Experiments

We empirically evaluate whether framing reward generation as
a hierarchical problem offers advantages over the traditional flat
(non-hierarchical) formulation. Specifically, we aim to evaluate:

Q1. Are the generated alignment rewards syntactically correct?

Q2. Do they preserve task feasibility?

Q3. Do they successfully induce behaviors that match the provided
specifications?

To investigate Q3, we additionally conduct user studies. Further

experimental details are provided in Sec. D of the Appenfix.

5.1 Baselines

To evaluate L2HR (referred to as Hier in the tables), we consider the
following baselines. For all LLM-based experiments, we generate
k = 8 reward function candidates per trial and repeat this process 3
times, resulting in a total of 24 reward candidates per configuration.

5.1.1 Language to Flat Reward (Flat). We generate flat alignment
reward 7fq (s, @) from language and incorporate this function into
the hierarchical setting using Eq. 4 and 5 to maintain a consis-
tent two-level training framework. Prompts are identical to those
used for L2HR, except that the prompts for flat reward generation



Task description: The objective is to pick up all apples and eggs on the
dining table and place them in the sink...
Environment context:

Background: PnP_LL_Actions = [...], PnP_HL_Actions = [...] ...

class ThorPickPlaceEnv(gym.Env):

def __init__(...): ...
Relevant task spaces: The agent’s option/subtask space consists of picking
up and placing the two types of objects...
Low-level user preference: The agent should avoid the stool while on its
way to pick up or drop an egg...
High-level user preference: The agent should pick up an object type that
is different from what was previously picked...
Additional info: Do not use function attributes or global variables...

(a) Natural Language Specifications

# High-level preference reward
def get_high_level_pref_gpt(state: Dict, prev_option: int, option: int) ->
Tuple[float, Dict[str, floatll:

return reward, reward_components

# Low-level preference reward

def get_low_level_pref_gpt(state: Dict, option: int, action: int) ->
Tuple[float, Dict[str, floatll:

return reward, reward_components

(b) Reward Functions designed by L2ZHR

Figure 3: Illustration of L2ZHR input and output. See Appendix
Sec. D.5 for more details.
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(b) Kitchen Domain

(a) iTHOR Domain

Figure 4: Rendered scenes from the iTHOR and Kitchen do-
mains. Fig. 1 (right) illustrates the Rescue World domain.

exclude option-related instructions (since flat rewards are indepen-
dent of options) and express user preferences as a single combined
description rather than separate high- and low-level specifications.

5.1.2  No Reward Design (Task). This baseline does not utilize LLMs
and uses only the task reward r and pseudo-reward r, without
incorporating any behavioral specifications (i.e., 7 = 7 = 0). As
this setting is less noisy, we run it for 5 trials.

5.2 Domains

We evaluate the approaches on three long-horizon, multi-subtask
domains: Rescue World, iTHOR, and Kitchen. Each domain poses
distinct challenges in subtask sequencing and low-level execution.
Furthermore, as we see later, flat rewards cannot in principle capture
all specifications in Rescue World and iTHOR, whereas they can

in Kitchen. This contrast allows us to investigate, in practice, how
effectively language specifications can be translated into flat and
hierarchical rewards across both types of scenarios. Additional
details are provided in Sec. D.1, Sec. D.4, and Fig. 8.

5.2.1 Rescue World. A variant of the Rescue World for Teams
(RW4T) domain [47], where the agent must collect and deliver all
supplies in the environment. This domain features a large state
space represented by a 407-dimensional vector and poses a long-
horizon challenge, requiring the agent to complete 8 subtasks, each
lasting up to around 10 steps. Behavioral specifications include:
(1) a high-level persistence specification for delivering all supplies
of one type before switching to another and (2) a low-level safety
specification for avoiding hazardous zones while carrying supplies.

5.2.2  iTHOR. Built upon the Unity game engine, iTHOR is an envi-
ronment within the AI2-THOR [32] framework that features several
realistic household scenes in which an agent can navigate and in-
teract with everyday objects. Here, we focus on a long-horizon pick
and place task within a kitchen setting consisting of 8 subtasks,
each requiring up to approximately 30 steps to complete. The agent
must deliver a set of apples and eggs located on the dining table
to the sink on the other side of the room. The state space is repre-
sented by a 30-dimensional vector that contains object and agent
positions and object states. Behavioral specifications include: (1) a
high-level diversity specification that requires delivering a different
item from the one previously delivered and (2) a low-level avoidance
specification that prevents the agent from going near a stool placed
in the environment while picking up or delivering an egg.

5.2.3 Kitchen. A single-agent variant of Overcooked, a benchmark
environment originally developed for studying human-AI collabo-
ration in kitchen tasks [38, 67]. In our setting, the agent needs to
prepare a salad with lettuce, tomatoes, and onions. This domain fea-
tures an even larger state space, represented by a 699-dimensional
continuous vector that captures various ingredient states. It also
involves a long-horizon task requiring the completion of 5 subtasks
in a strict sequence, with the final 2 subtasks dependent on the
successful completion of all preceding ones. The high-level behav-
ioral specification is a preferred chopping sequence (e.g., tomatoes
— onions — lettuce). Since the environment uses fixed low-level
policies, we skip low-level reward design in this domain.

5.3 Numerical Experiments

As a precursor to evaluting solutions to HRDL, we also conducted
experiments where hand-crafted flat and hierarchical rewards were
used directly to train policies without requiring reward generation
from language specifications. These experiments serve as a proof-
of-concept and demonstrate that:

e given expert-specified hierarchical rewards (7}, 7] ), existing RL
algorithms can effectively learn hierarchical policies (7}, 7})
that achieve high task performance and strong alignment with
designer specifications; and

e while expert-specified flat rewards f}la .

ioral specifications, they fail to express ones that require knowl-

edge of the previous subtask (e.g., the persistence specification in

Rescue World and the diversity specification in iTHOR).

can capture some behav-
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Figure 5: Syntax error rates for LLM-based reward generation,
computed over 24 candidates per configuration.

We report these preliminary results in Sec. D.2 in the Appendix.
Now, we return to the core HRDL setting, where designed rewards
must be synthesized from natural language inputs.

5.3.1 Q1. Are the designed rewards syntactically correct? Figure 5
shows that hierarchical reward generation achieves substantially
lower code generation error rates than flat reward generation in all
three domains, suggesting that formulating the HRL reward design
problem hierarchically can simplify reward synthesis for LLMs. In
Rescue World, the main source of errors for flat rewards is the infea-
sibility of expressing the persistence specification using only state
features — this requires access to the prior option, which flat re-
wards cannot capture. Despite this, the LLM attempts to enforce the
specification, hallucinating variables like last_delivered_type
that are not available in the state or prompt. Flat reward generation
similarly struggles in iTHOR when trying to express the diver-
sity specification as this also requires access to the prior option,
causing the LLM to attempt to access internal environment state
variables that are not available to it. In Kitchen, higher error rates
stem from the complexity of reasoning over low-level actions. For
example, correctly checking if the agent is chopping an onion on
the low-level requires inspecting coordinate-level state variables,
which frequently leads to errors such as ‘int’ object is not
subscriptable. In contrast, having access to the options space in
HRD enables direct reasoning over high-level behaviors (e.g., chop
onion), greatly simplifying reward generation.

5.3.2 Q2. Do the designed rewards preserve task feasibility? Hier
consistently better preserves task feasibility than Flat also across all
domains (Figure 6), which is essential for real-world deployment. In
Rescue World, attempts to encode the persistence specification with
a flat reward often rely on spurious assumptions (e.g., inferring the
last delivered item type from location), leading to unintended be-
haviors. In iTHOR, the agent’s task completion rate is notably low.
Similar to Rescue World, the agent often relies on spurious heuris-
tics to determine the type of object previously delivered, resulting
in unintended reward accumulation. Moreover, when executing the
“PickNearestTarget” primitive, the agent fails to correctly identify
which object it is picking up: it checks object states (e.g., whether
an item is in the sink or on the dining table) rather than computing
distances to determine the nearest object. This behavior further
contributes to incorrect reward accumulation. In Kitchen, flat re-
wards often struggle to reason over low-level actions; for instance,
it can be error-prone to infer which cutting board or ingredient
the agent is interacting with based solely on directional actions,
leading to alignment rewards that interfere with task completion.
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Figure 6: Task completion rates for LLM-generated rewards,
calculated as the proportion of designed rewards that pre-
serve task feasibility among syntactically valid candidates.

5.3.3 Q3. Do the designed rewards actually lead to agent behav-
ior that match the behavioral specifications? Table 1 summarizes
how well each method aligns with the behavioral specifications, as
measured by the handcrafted ground-truth rewards (7, 7). The
Total metric combines task and alignment rewards, serving as an
empirical proxy for the overall fitness F. In Rescue World, Hier
substantially outperforms both Task and Flat baselines on high-
level alignment, achieving an average return of 16.65 and fully
matching the high-level specification in 76.92% of successful runs.
This highlights Hier’s ability to encode the persistence specification,
which flat rewards fundamentally cannot represent. While Flat oc-
casionally (12.50%) attains expert-level high-level alignment, these
instances are coincidental. Both methods perform comparably on
low-level alignment, as the agent’s carrying status can be inferred
directly from observable states without explicit option conditioning.
Overall, Hier achieves the highest total return, with 69.23% of policy
pairs reaching expert-level alignment on both levels, demonstrating
that it captures designer intent while maintaining task success.

In iTHOR, Hier outperforms Flat on high-level alignment (14.19
vs. 7.67) in a similar manner as in Rescue World, as the diversity
specification cannot be fully captured by the flat reward without
access to the agent’s current option. In this case, Hier also signifi-
cantly outperforms Flat on low-level alignment (-3.75 vs. -35.20) as
well. We notice that although the LLM is explicitly asked to penalize
the agent’s proximity to the stool when on its way to picking up or
dropping an egg, the generated flat rewards only apply the penalty
in the timestep that the agent is specifically performing the pick or
place action, leading the agent to not avoid the stool. This makes
sense, as it is difficult to discern the agent’s intent in picking up or
dropping an egg from just the state without option information.

In Kitchen, Hier again surpasses Flat, achieving higher high-level
alignment returns (0.39 vs. 0.06) and a substantially greater success
rate in capturing the chopping specification (92.86% vs. 10.00%). Im-
portantly, while the flat reward formulation is theoretically capable
of capturing the desired chopping behavior, doing so requires com-
plex and error-prone logic: only 1 flat reward candidate successfully
implemented the intended specification. This demonstrates a key
advantage of designing rewards for HRL with HRD: even when
flat rewards are theoretically sufficient, hierarchical rewards can
simplify reward design through high-level abstractions and lead to
better alignment with behavioral specifications. Example videos of
policies for all domains are included in supplementary material.



Table 1: Table showing the performance of policies trained with the task reward either alone or combined with LLM-generated
flat or hierarchical rewards. For each metric, we report both the cumulative reward returns and the percentage of policies at
expert-level alignment (attaining the maximum possible cumulative return for that metric). “High-Level” and “Low-Level”
rewards for evaluation are computed using handcrafted alignment rewards. “Total” represents the sum of the task reward
and both the high and low-level alignment rewards. Means and standard deviations are computed over all runs for the Task
baseline, and only over the LLM-generated reward candidates that successfully complete the task for Flat and Hier.

High-Level Low-Level T
Domain Method 1gh-leve ow-eve otal
Rewards T Expert%7 Rewards]T Expert%] Rewards Expert%7
Task 11.22 + 5.57 20.00 -16.46 + 5.49 0.00 73.80 £ 5.70 0.00
Rescue Flat 9.38 +£7.02 12.50 -2.62 £5.19 62.50 85.13 +£ 9.33 12.50
Hier 16.65 + 6.93 76.92 -0.69 + 1.58 76.92 93.98 £ 9.01 69.23
Task 4.10 £ 1.34 0.00 -23.38 +£ 1.86 0.00 12.31 + 0.66 0.00
iTHOR Flat 7.67 £ 4.48 0.00 -35.20 = 12.42 0.00 3.27 £9.31 0.00
Hier 14.19 + 2.23 87.50 -3.75 £ 8.14 75.00 37.68 £ 6.68 62.50
Task 0.00 £ 0.00 0.00 - - 0.75 £ 0.00 0.00
Kitchen Flat 0.06 +£0.13 10.00 - - 0.80 £ 0.12 10.00
Hier 0.39 £ 0.05 92.86 - - 1.08 + 0.05 92.86
o= o.001 Table 2: Candidate agent policies (%) that received a perfect
P <0001 p=0.86 p < 0.001 — alignment score from all human participants.
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1 Rescue World Kitchen
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24 Flat 12.50% 50.00% 12.50% 10.00%
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Figure 7: Human-provided ratings for agent alignment.

5.4 Evaluations with Human Participants

In real-world applications, manually designed ground-truth rewards
are rarely available. To better reflect practical deployment scenarios,
we conducted an IRB-approved user study on Rescue World and
Kitchen using human participants recruited via Prolific. The goal
was to assess whether Hier agents are perceived as better aligned
with behavioral specifications than Flat agents.

In this study, non-expert participants effectively served the role
of fitness function F, providing human-centered evaluations. Partic-
ipants viewed videos of agent behaviors produced by both methods
and rated their alignment with textual specifications on a scale from
1 (least aligned) to 5 (most aligned), similar to the scale employed in
the evaluation methodology of [34]. Participants were not aware of
the underlying reward design methods of the policies. We collected
usable responses (e.g., those that passed attention checks) from 30
participants, evenly split across the two domains. Further details of
the study design are provided in Sec. E in the Appendix.

Fig. 7 shows that participants rated Hier agents substantially
higher than Flat agents for aligning with high-level behavioral
specifications. In Rescue World, Hier significantly outperforms Flat
on the persistence preference (4.76 vs. 2.42), a specification that
flat rewards struggle to capture due to the lack of previous option
information. While both methods achieved similar ratings for the

low-level safety specification, Hier achieves significantly higher
overall alignment scores (4.64 vs. 3.46). These statistically significant
differences suggest that HRD can be better suited for capturing
complex behavioral specifications.

In Kitchen, Hier sees an even more pronounced improvement
for the chopping specification (4.47 vs. 1.70, p < 0.001). This larger
gap arises because, unlike in Rescue World, the preferred behavior
in Kitchen rarely occurs accidentally, as aligning with the chopping
specifications requires taking additional steps in the environment.
Notably, across both domains, Hier policies consistently receives
average ratings above 4, indicating a strong perception of alignment.
These findings suggest that, in practice, when task completion is
used to filter out unsuccessful policies, the remaining Hier candi-
dates are consistently well-aligned with behavioral specifications.

Table 2 shows that over half of the policies produced by Hier
achieve perfect human ratings across all behavioral specifications,
substantially outperforming those generated by Flat. Overall, Hier
consistently outperforms Flat in capturing language-based behav-
ioral specifications across domains in both simulated evaluations
and user studies.

6 Conclusion

This paper introduces the Hierarchical Reward Design (HRD)
problem, which (1) formulates a more expressive reward structure
than flat rewards, (2) integrates seamlessly with existing decision-
making frameworks and RL algorithms, and (3) better encodes



behavioral specifications for long-horizon tasks, with an initial
solution to this problem (L2HR) achieving considerably better or
comparable results in both numerical and human evaluations.

While our results provide strong motivation for HRD, several lim-
itations and interesting areas for future investigation remain. First,
our experiments focus on complex but simulated domains; future
work should evaluate the effectiveness of HRD in real-world appli-
cations, such as robotics and interactive Al systems. Additionally,
exploring more sophisticated reward generation techniques (poten-
tially incorporating evolutionary optimization or human feedback)
remains a promising direction for future research.

Last but not least, we emphasize that human-agent alignment is
inherently challenging and HRD should not be viewed in isolation.
Rather, it serves as a complementary approach within a broader
ecosystem of methods, including learning from demonstrations,
rankings, user corrections, and more. Understanding how HRDL
and L2HR interact with these approaches is an important avenue
for future work, bringing us closer to Al agents that are reliably
aligned with human needs, values and objectives.
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A Further Discussion of Related Work

Reward Machines (RMs) Reward Machines (RMs) [26] provide a structured representation of reward functions. However, their primary
objective differs fundamentally from that of Reward Design and, consequently, HRD. RMs aim to help RL agents exploit its reward structure
to improve sample efficiency during learning. In contrast, HRD focuses on producing hierarchical reward structures that maximize policy
fitness, which in our case is measured by the policy’s alignment with behavioral specifications. In addition to the different goals, the
underlying representations are also distinct. RMs rely on temporal logic formulas to define structured rewards, while HRD extends the
original Reward Design Problem [57] and defines hierarchical reward functions inspired by established HRL frameworks (e.g., options and
feudal hierarchies). Building on RMs, [18] introduced Hierarchies of Reward Machines (HRMs) to increase the expressivity of RMs and
further accelerate policy convergence in some cases. Again, while HRMs aim to improve learning efficiency, HRD focuses on enabling the
capture of complex behavioral specifications through a hierarchical reward structure, particularly for long-horizon tasks. Because RMs or
HRMs do not focus specifically on reward design from human input, the ease of specifying RMs or HRMs from human input remains to be
investigated. In contrast, for the HRD problem using the L2HR algorithm and human evaluations, we have empirically shown that language
models can leverage the structure of HRD to generate hierarchical rewards that induce policies well-aligned with complex behavioral
specifications. An interesting future direction is to explore novel approaches that leverage complementary strengths of RMs and HRD to
facilitate both sample-efficient and human-aligned Al

LLM-RL Hybrid Agents Although our work focuses on hierarchical RL paradigms, there is a growing body of research on hybrid
agents that combine large language models (LLMs) for subtask selection with reinforcement learning for subtask execution [3, 70]. HRD
can help contribute to this line of work in two key ways. First, it can provide a formalism for analyzing reward design in hybrid LLM-RL
systems. Second, it can inform the development of advanced methods that leverage LLMs with hierarchical reward structures, combining the
expressivity of hierarchical rewards with a user-friendly reward design process.

B Theoretical Analysis

B.1 Low- and High-Level Decision Models
B.1.1 Low-Level MDP Models

ProposITION 1 (Low-LEVEL MDP MoDELS). Let My, = (S, A, T,y) be a world model, O a set of options, andry : SX O X A — R a low-level
reward. For a fixed option o € O, the tuple My, = (S, A, T,r.(-,0,-),y, ho) defines an MDP, where h,, is the horizon determined by the option’s
termination condition B(-,0).

ProorF. The state space is S and the action space is A. The transition function T is the transition function of the world model and is
Markovian. Defining ry,,(s, a) = rr(s, 0, a) produces a Markov reward function that depends only on the state-action pair. Thus, the tuple
satisfies the four standard components of an MDP. O

B.1.2  High-Level SMDP Model



PROPOSITION 2 (HIGH-LEVEL SMDP MoDEL). Let M, = (S, A, T,y, h) be a world model, O a set of options, andry : O X S X O — R the
high-level reward. Then, My = (O XS, O, Ty, ry, v, h) forms a semi-MDP, where Ty : O X S X O — A(O X S xN) defines the joint distribution
over the next augmented state and transit time, where N is the set of natural numbers.

PRrROOF. A semi-MDP (SMDP) requires (1) a set of states, (2) a set of actions, (3) for each state-action pair, an expected discounted reward,
and (4) a well-defined joint distribution over the next state and transit time [64].

We define the state space as the Cartesian product O X S, combining the previous option 0~ € O and the current environment state s € S.
The action space is the set of options O. The reward function for each state-action pair ((07, ), 0) is given by the provided high-level reward
ru(o7,s,0).

To define the transition dynamics, consider the transition probability from a given augmented state (07, s) upon selecting an option o. Let
s’ denote the state upon option termination and k the number of timesteps to reach s’. The transition function Ty is defined as:

Tu(o,s klo7,s,00= > Pr(r;7e)  Iikeiely - B(5',0) ©)

7: (07,s)—(0,5")

where 7 is any trajectory that starts in state s after option o~ and reaches state s’ via option o, Pr(z; 711 ,) is the probability of trajectory

7 under policy 717 ,, and |7| is the number of timesteps taken by the trajectory. Given a specific 7 = (0;-1, 8¢, 0, St41, -+ » Or4y—1, St+5) and
knowing that 0;,_; =0~ and o4, ..., 044-1 = 0, the probability of the trajectory is given by:
n-1 n-2
Pr(zi o) = | | (D mro(@lseen) T(sevnilsnn @) - | ] (1= Blstrien.o)) )
i=0 a i=0

The first product accounts for the probabilities of transitioning through the intermediate states under 7z, and the environment’s underlying
dynamics T. The second product ensures that the option does not terminate at intermediate states prior to reaching s’. As all four conditions
are satisfied, the tuple My forms a valid SMDP.

m}

B.1.3  High-Level MDP Model Alternatively, the high-level process can be modeled as an MDP if single-step high-level rewards rls{tep (0¢-1,5¢,0¢)
are defined. [71] was the first to model high-level decision-making as an MDP within the options framework. While our formulation differs
from theirs, we draw inspiration from their use of single-step high-level rewards and demonstrate that the high-level process in our setting
can also be modeled as an MDP.

ProposITION 3 (HIGH-LEVEL MDP MopEL). Let M, = (S, A, T,y, h) be a world model, O a set of options, and r;fp :0OX8Xx0 —>Ra

“single-step” high-level reward. Then, M;e" =(0xS,0, T;IteP, r;;e’], Y, h) forms an MDP, where T:Ite‘o :0OXSX0 — AOXS).

PrROOF. We again define the state space as O x S and the action space as O. The transition function is defined as: T:Itep (0,5"l07,s,0) =
Y.a 7 (als,0) - T(s'|s, a) - I{o=0) . Termination condition is not modeled in the transition function, since option selection occurs at every step.

The reward function is r;;ep , which satisfies the MDP requirements. O

As a side note, we can derive the expected SMDP high-level reward from the single-step rewards as follows:

k
rg(o”,s,0) = E[Z yi_lr;prJS(o_,o, s, 1)] (8)

1
i=1
where E(07, 0,5, 1) is the event of initiating option o in state s at timestep ¢ following option 07, and k is the random variable denoting the
number of steps after which the initiated option o terminates, as determined by its termination condition S.

B.2 Policy Learning with Hierarchical Rewards

Given hierarchical reward functions in Definition 1 and Definition 2, agents can learn low- and high-level policies through interactions with
the environment under their respective decision-making models.

B.2.1 Low-Level Policy Learning For each option o; € O, the low-level decision-making process can be formulated as an MDP M ,, (see
Proposition 1). Let r o, (s, a) = r.(s, 0;, a) represent the reward function for option o; and 7,, (als) a policy in the MDP. The objective for
low-level policy learning is to maximize the cumulative discounted rewards until the termination of option o;:

ho

m1.(als,0=0;) = arg max By, 1.0/, [ ) "0, (51.01) | Mio,] ©)
i =0

where h, is the horizon determinied by the option’s termination condition §(, 0;). Standard RL algorithms for MDPs can be directly used to
obtain low-level policies.



B.2.2  High-Level Policy Learning (SMDP) When the high-level decision-making is modeled by an SMDP, the high-level policy ng(olo™, s)
selects options only at the termination of the previous option, operating on a coarser temporal scale compared to the low-level policy
mr(als,0). Letu =0,..., hindex the high-level decision points, and define #,, as the number of primitive timesteps taken to execute option
oy. Then, the high-level policy learning objective is:

h
7510107, 8) = argmax B,y 5,10, )~Tirsou~r | Y, ¥ 71(0u-1, 50, 0u) M), (10)
u=0
u-1
where T, = Z Mo;

j=1

Here, we need to extend the SMDP by introducing a dummy initial option o4, with zero duration, and let 0_; = 04. Any algorithm for
learning option-level policies in an SMDP can be used here.

B.2.3  High-Level Policy Learning (MDP) The learning objective when the high-level decision-making is modeled by an MDP is:

h
t - 1 t
”ISJeP(O|O ’s) =arg m;?XE(Ot—l,St)~T:1tep,0t~n [Z ytrlsqep(ot_l’st’ Ot))|M;{ep] (11)
t=0

Similarly, we let o_; = 04. When the termination condition is known, as in our setting, the high-level policy can be expressed as:
ﬂ;{te”(o|0_, s) = B(s,07 )i (olo™,s) + (1 = B(s,07))(0=0-), Where 7 (0|0~ s) specifies the policy at decision points. This allows leveraging
known termination conditions to constrain policy rollouts.

B.3 Expressivity of HRD

PROPERTY 1. Certain specifications on sub-task selection can be expressed through Frz (07, s, 0), but they cannot be expressed by a flat reward
function: Friq (s, a).

Proor. Consider two distinct subtask sequences, {o; — 0} and {o] — 05} such that after executing either o0, or o], the agent arrives at the
same state s*. The designer’s specification is for the agent to follow the corresponding subtask sequences: execute o; after 0; and o}, after o].
A flat reward function 74, (s, @) cannot represent this specification, as the reward signal depends only on the current state and action, and
cannot distinguish whether the agent reached s* via o; or o]. In contrast, with HRD’s high-level reward function, we can specify the ordering
even in s* by defining fy (0™ =0y, s=5",0=0;) > Fy(0~ =01,5=5,0 # 03) and Fy (0~ =07, s=5",0=0;) > Fg(0~ =07,5=5",0 # 0,). O

PROPERTY 2. Certain specifications on sub-task execution can be expressed through 71, (s, 0, a), but they cannot be expressed by a flat reward
Sfunction: Fri44(s, a).

Proor. Consider a setting where the behavioral specification explicitly depends on the current option o. Such specifications cannot be
represented using a flat reward function, as the reward signal 74 (s, a) is identical for all option values. O



C Language to Hierarchical Rewards (L2HR) Pseudocode

Algorithm 1 Language to Hierarchical Rewards (L2HR)

1: Input: World model M, set of options O, learning routine Ay > task reward r, pseudo-reward r,, specifications I, thresholds for
successful subtask and task completion t;, and tg, and an LLM.
2 FF), .. .,fék) «— LLM(LowLEeveELPrROMPT(])) > Generate low-level alignment rewards
3 fori=1tok do
& if Static_Check(?\") then
// AM,,,,,. denotes the learning subroutine for low-level MDPs ML
ﬁéi) =AM, (rp + Féi))
end if
: end for )
: I « Indices of ﬂél) achieving cumulative pseudo-rewards above threshold ¢,

® N v

9: ;71(_11 ). .,f;lk) < LLM(H1GHLEVELPROMPT(])) > Generate high-level alignment rewards

10: for j =1tok do

1t: if Static_Check(Fg )) then

12: Select low-level policy 7D, whereie I > Done via hashing in our implementation
/I Apm,,y denotes the learning subroutine for the high-level model My

13: ng) (—ﬂMp:H(V+f(j);7T£i))
14: end if
15: end for

() =)

)
H 'L

16: Output: Return all alignment rewards (7
above threshold ty

) and corresponding trained policy pairs (7;;”, Jféi)) that achieve cumulative task rewards

D Experimental Details
D.1 Further Domain Details

Rescue World is a variant of the RW4T domain [47], a configurable testbed for simulating disaster response scenarios in which a first
responder deploys robots to collect scattered supplies and deliver them to designated areas. For our experiments, we configure the environment
with a single robot and represent the world using a discrete grid-based layout (Fig. 8a). The robot must determine both the delivery order of
supplies and the optimal path for completing deliveries. This setting naturally motivates a hierarchical action representation due to the need
for subtask sequencing and execution. The primitive action space A includes six actions: pick, drop, and four directional movements (up,
down, left, right). The option space O consists of multi-step pick-up and delivery macro-actions for two supply types: food and medical
supplies.

iTHOR is a simulator built within the AI2-THOR framework [32], featuring realistic household environments where an agent can
navigate and interact with everyday objects. We use FloorPlan 20 as the environment for our experiments. In our setup, apples and eggs
are spawned on one side of a long kitchen table, the sink is located on the opposite side, and a stool is positioned to the right of the table,
as shown in Fig. 8b. The option space O consists of pick-up and place operations for each object type, while the action space A includes
navigation actions (move forward, turn left, turn right) and pick/place primitives. While conducting experiments with expert-provided
rewards (Sec. D.2), we observe that inducing the agent to follow the diversity preference is highly sensitive to the reward scale. To address
this, we include additional contextual information in the LLM prompt specifically about the typical length of the options to guide more
consistent reward generation.

Kitchen is a single-agent variant of Overcooked, a benchmark environment originally designed for studying human-AI collaboration in
kitchen tasks [38, 67]. In our setting, the agent must prepare a salad using lettuce, tomatoes, and onions. We adopt the structured option space
from [38], which includes high-level options such as chop onion and combine chopped onion and chopped tomatoes. The environment
also provides hard-coded low-level controllers for executing these options. The primitive action space A includes directional movement
actions that enable interactions with countertops and other kitchen objects.

The visualizations of the three task domains used in our study are shown in Fig. 8. The Rescue World visualization was generated using
Pygame based on its Gym environment, the iTHOR visualization was created by visually rendering the environment within the Unity engine,
and the Kitchen domain visualization was adopted from [38].
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Figure 8: Screenshots of renderings of the three task domains used in our study.

Table 3: Table showing the performance of policies trained with the task reward alone and with task reward combined with
expert-provided flat or hierarchical rewards. For each metric (“High-Level,” “Low-Level,” and “Total”), we report both the
cumulative returns and the percentage of policies achieving expert-level alignment. A policy is considered expert-aligned at
the high or low level if it attains the maximum possible cumulative return for that metric. “Total” represents the sum of the
task reward, high-level alignment reward, and low-level alignment reward, and a policy is deemed expert-level overall if it
aligns at both levels.

High-Level Low-Level Total

Domain Method
RewardsT Expert% T RewardsT Expert%] RewardsT Expert%7

Task 11.22 £ 5.57 20.00 -16.46 + 5.49 0.00 73.80 + 5.70 0.00
Rescue Flat” 6.84 +5.24 0.00 -0.32 + 0.72 80.00 85.88 + 4.66 0.00
Hier* 20.00 £+ 0.00 100.00 -1.00 £ 2.24 80.00 97.15 £ 2.94 80.00
Task 4.10 + 1.34 0.00 -23.38 + 1.86 0.00 12.31 £ 0.66 0.00
iTHOR Flat” 7.80 + 2.41 0.00 0.00 = 0.00 100.00* 35.41 + 2.98 0.00
Hier” 15.00 = 0.00 100.00 0.00 = 0.00 100.00 42.61 + 0.35 100.00
Task 0.00 £+ 0.00 0.00 - - 0.75 £+ 0.00 0.00
Kitchen  Flat* 0.40 = 0.00 100.00 - - 1.10 + 0.00 100.00
Hier” 0.40 = 0.00 100.00 - - 1.10 = 0.00 100.00

D.2 Results with Expert-Provided Rewards

Table 3 reports the results of policies trained with expert-provided flat F}la .
and Hier” respectively). In other words, no LLMs were used for reward generation in these experiments. Across all three domains (Rescue
World, iTHOR, and Kitchen), Hier” consistently achieves the highest total returns.

In Rescue World, Hier” matches Flat* in low-level alignment return but significantly outperforms it in high-level alignment, achieving an
average total return of 97.15 with 80.00% policies reaching expert alignment, compared to 85.88 and 0.00% for Flat™. A similar pattern is
observed in iTHOR, where Hier” achieves an average total return of 42.61 with all policies reaching expert alignment, while Flat* achieves
35.41 with none reaching expert alignment. We also note that although Flat* matched Hier* in low-level alignment for iTHOR, it did so
by following the low-level avoidance preference regardless of the option. In contrast, Hier* selectively applies this preference to options
involving eggs, demonstrating finer-grained alignment with low-level human specifications. These results highlight that Hier” better captures
behavioral dependencies related to the current and previous options, enabling it to represent high-level persistence in Rescue World and
diversity in iTHOR, which are beyond the representational capacity of flat rewards.

In Kitchen, Hier” and Flat* perform equally well on both task and high-level returns. While Flat* is theoretically capable of capturing
dependencies on the previous subtask in Kitchen by inferring it from environment state, doing so is difficult and error-prone without

*

and hierarchical rewards (7}, 7}) (shown in the table as Flat



expert-designed rewards, as shown in Sec. 5. Overall, these results demonstrate that expert-designed hierarchical rewards can be easily
integrated with task-related rewards to train policies that (1) achieve strong task performance comparable to baselines without reward
design (2) align well with behavioral specifications, including those that flat rewards cannot effectively represent.

D.3 Training Setup

In our implementation, we used LLMs to generate single-step high-level rewards, allowing the high-level decision process to be modeled as
either an MDP or an SMDP. When using an SMDP, we computed the corresponding SMDP rewards using Eq. 8.

D.3.1  Rescue World For Rescue World, we modeled the high-level decision-making as an SMDP and trained the high-level policy 7z using
DON [42]. The hyperparameters for training 7y are as follows:

Network: 2 layers with 64 units each and ReLU non-linearities
Optimizer: Adam [31]

Learning rate: 1- 1074

Batch size: 256

Discount: 1.0

Total timesteps: 3 - 10°

Buffer size: 1 - 10°

Exploration fraction: 0.2

Initial exploration probability: 0.1
Final exploration probability: 0.05
Model update frequency: 4

Number of gradient steps per rollout: 1
Target update interval: 1 - 10
Polyak-averaging [51]: 1.0

We trained the low-level policy 77 using PPO [55]. The hyperparameters for training sy, are as follows:

Network: 2 layers with 64 units each and ReLU non-linearities
Optimizer: Adam [31]

Learning rate: 3 - 1074

Batch size: 64

Discount: 1.0

Total timesteps: 2 - 10°

Initial entropy coefficient: 1

Final entropy coefficient: 0.01

Entropy decay fraction: 0.5

Number of environment steps per update: 2048

D.3.2 iTHOR For iTHOR, we modeled the high-level decision-making as an SMDP and trained the high-level policy 7y using DQN [42].
The hyperparameters for training sz are as follows:

Network: 2 layers with 128 units each and ReLU non-linearities
Optimizer: Adam [31]

Learning rate: 1-107*

Batch size: 32

Discount: 0.99

Total timesteps: 5.0 - 10°

Buffer size: 5 - 10°

Exploration fraction: 0.25

Initial exploration probability: 1.0
Final exploration probability: 0.05
Model update frequency: 4

Number of gradient steps per rollout: 1
Target update interval: 1 - 10*
Polyak-averaging [51]: 1.0

We trained the low-level policy 77 using PPO [55]. The hyperparameters for training s, are as follows:

Network: 2 layers with 64 units each and ReLU non-linearities
e Optimizer: Adam [31]
o Learning rate: 3 - 10™*



Batch size: 64

Discount: 1.0

Total timesteps: 1.5 - 10°

Initial entropy coefficient: 1

Final entropy coefficient: 0.01

Entropy decay fraction: 0.5

Number of environment steps per update: 2048

D.3.3 Kitchen For Kitchen, we modeled the high-level decision-making as an MDP and trained the high-level policy 7y using DQN [42],
implemented so that termination conditions f were enforced during rollouts. We adopted the MDP formulation because it outperformed the
SMDP setting with DON in this domain. Given the highly delayed rewards and the importance of subtask sequencing in Kitchen, we also
incorporated specification-agnostic demonstrations to bootstrap policy learning. Hyperparameters for learning the high-level policy 7y are
as follows:

Network: 2 layers with 256 units each and ReLU non-linearities

Optimizer: Adam [31]

Learning rate: 1 - 107 with linear scheduling

Batch size: 256

Discount: 0.99

Total timesteps: 3 - 10°

Buffer size: 1-10°

Exploration fraction: 0.33

Initial exploration probability: 0.5

Final exploration probability: 0.1

Model update frequency: 4

Number of gradient steps per rollout: 1

Target update interval: 1 - 10

Polyak-averaging [51]: 1.0

For Rescue World and Kitchen, we used a server with 30 vCPUs and an NVIDIA A10 GPU (24GB PCle) to train k policies in parallel, each
corresponding to one of the k reward candidates generated by the LLM. For iTHOR, we used a server with an NVIDIA GeForce RTX 5090
GPU to train our policies.

D.4 LLM Prompts

The prompts used in our work are adapted from [39], but differ in important ways to realize hierarchical rewards. Specifically, our prompts
are designed to: (1) reflect a hierarchical reward structure; and (2) generate rewards that align with behavioral specifications while preserving
task feasibility.

D.4.1  System Prompt As in [39], our system prompt provides a concise, domain-agnostic description of the reward design task and defines
the function signature that the LLM should use in its output. The full system prompt is provided in Prompt 1 on Page 18.

D.4.2 User Prompt The user prompts follow a similar methodology to that of [39], using code snippets as contextual input and an
accompanying task-specific natural language description. To support hierarchical reward generation, we extend the accompanying task
description by providing the following: (1) a description of relevant action spaces (i.e., the option space O and/or action space A) to help the
LLM distinguish between temporally extended behaviors and primitive actions; (2) a behavioral specification describing preferences beyond
task completion; (3) additional code formatting guidelines to emphasize that the LLM should capture behavioral logic without making the
reward function stateful (e.g., storing variables across calls). Moreover, the complexity of our domains introduces two additional challenges,
which we address by augmenting the code snippets with further contextual information:

Cross-file Dependencies. In our environments, key components of the task logic often depend on constants and definitions from
separate supporting files (e.g., utils.py). To address this, we manually copied the necessary definitions from these files and included them
as background comments at the top of the environment code provided to the LLM. This ensures all relevant constants and definitions are
explicitly exposed during reward generation.

Complex Observation Representations. Our environments feature structured observations, such as spatial maps, whose semantics are
not fully captured by the observation’s shape or naming alone. For example, it can be difficult to infer what each value in the observation (e.g.,
map cell) represents from the environment code. To mitigate this, we also provided an example observation input as part of the background
comments in cases where the LLM might find it challenging to correctly interpret the structure and meaning of the observation space.

To ensure a fair comparison across conditions, the same code snippets of each domain were used for all reward generation tasks, whether
generating low-level, high-level, or flat rewards. The full environment contexts and corresponding prompts for both Rescue World and
Kitchen are shown in Prompt 2 and Prompt 3 on Page 18 and Page 26 respectively.



Prompt 1: System Prompt

You are a reward engineer trying to write reward functions to solve reinforcement learning tasks as effective as possible. A
programmer has already specified the task reward, and your job is to specify additional rewards according to the user’s preference.
More specifically, your goal is to write an additional reward function for the environment to help the agent complete the task
according to user preference. Your reward function should use useful variables from the environment as inputs. As an example, the
reward function signature can be:

The LLM is presented with one of the following function signatures, selected based on the desired reward function to be designed.

def get_high_level _pref_gpt(state: Dict, prev_option: int, option: int) ->
Tuple[float, Dict[str, float]]:

state: the current state of the environment.

prev_option: the last option (subtask) executed by the agent to reach the
current state.

option: the option (subtask) the agent is about to perform in the current
state.

return reward, reward_components

def get_low_level_pref_gpt(state: Dict, option: int, action: int) ->
Tuple[float, Dict[str, floatl]:

(N

state: the current state of the environment.
option: the option (subtask) selected by the agent in the current state.
action: the action that the agent is about to perform in the current state.

[

return reward, reward_components

def get_flat_sa_pref_gpt(state: Dict, action: int) -> Tuple[float,
Dict[str, float]]:

(N

state: the current state of the environment.
action: the (low-level) action that the agent is about to perform in the
current state.

(N

return reward, reward_components
The output of the reward function should consist of two items:
(1) the user preference reward,
(2) a dictionary of each individual reward component in the user preference reward.
The code output should be formatted as a python code string: "python ... ".
Some helpful tips for writing the reward function code:
(1) Most importantly, the reward code’s input variables must contain only attributes of the provided environment class definition
(namely, variables that have prefix self.). Under no circumstance can you introduce new input variables.

Prompt 2: User Prompt for Rescue World

The Python environment is

Background:

1) Initial game map example
init_map = np.array(
[C
rw4t_utils.RW4T_State.empty.value,
rw4t_utils.RWAT_State.empty.value,
rw4t_utils.RW4T_State.circle.value,




rw4t_utils.RWAT_State.empty.value,
rw4t_utils.RW4T_State.yellow_zone.value,
rwdt_utils.RW4T_State.school.value

RW4T_State.
RW4T_State.
.yellow_zone.value,
RW4T_State.
RW4T_State.
RW4T_State.

RW4T_State

RW4T_State.
RW4T_State.
RW4T_State.
.square.value,
RW4T_State.
RW4AT_State.

RW4T_State

RW4T_State.
RW4T_State.
RW4T_State.
RW4T_State.
RW4T_State.
RW4T_State.

RW4T_State.
RW4T_State.
RW4T_State.
RW4T_State.
RW4T_State.
RW4T_State.

RW4T_State.
RW4T_State.
RW4T_State.
RW4T_State.
RW4T_State.
RW4T_State.

J;
[
rw4t_utils.
rwdt_utils.
rw4t_utils.
rwdt_utils.
rwdt_utils.
rwdt_utils.
ip
L
rwdt_utils.
rwdt_utils.
rwdt_utils.
rwdt_utils.
rwdt_utils.
rw4t_utils.
ip
L
rwdt_utils.
rw4t_utils.
rwdt_utils.
rw4t_utils.
rwdt_utils.
rw4t_utils.
1
[
rwdt_utils.
rw4t_utils.
rwdt_utils.
rwdt_utils.
rwdt_utils.
rwdt_utils.
ip
[
rw4t_utils.
rwdt_utils.
rw4t_utils.
rwdt_utils.
rw4t_utils.
rwdt_utils.
1D
2) rw4t.utils:
class RWAT_LL_Actions(Enum):
go_left = @
go_down = 1
go_right = 2
go_up = 3
pick = 4
drop = 5
idle = 6

class RWAT_HL_Actions_EZ(Enum):

go_to_
delive
go_to_
delive

circle = 0
r_circle
square =
r_square

n N

empty.value,
yellow_zone.value,

empty.value,
yellow_zone.value,
empty.value

empty.value,
empty.value,
empty.value,

yellow_zone.value,
empty.value

empty.value,
circle.value,
empty.value,
empty.value,
empty.value,
empty.value

yellow_zone.value,
yellow_zone.value,
empty.value,
empty.value,
yellow_zone.value,
yellow_zone.value

empty.value,
empty.value,
empty.value,
empty.value,
square.value,
empty.value




class RWAT_HL_Actions_With_Dummy_EZ(Enum):
go_to_circle = 0@
deliver_circle
go_to_square =
deliver_square
dummy = 4

n N

class RW4T_State(Enum):

empty = 0
circle = 1
square = 2
triangle = 3
obstacle = 4

yellow_zone = 5
orange_zone = 6
red_zone = 7
school = 8
hospital = 9
park = 10

class Holding_Obj(Enum):
empty = @
circle =
square =
triangle

n o =

import numpy as np
import gymnasium as gym

import rw4t.utils as rw4t_utils

class RWAT_GameState:

def __init__(self, obs: np.ndarray, pos: np.ndarray, holding: int,
option_mask: np.ndarray):

:param obs: a 2D numpy of the current environment

:param pos: a 1D numpy array of the agent's (x, y) position in the

environment

:param holding: an integer indicating what object the agent is currently

holding if any.

This parameter only has a non-empty value AFTER the agent
performs a 'pick up ...' option and BEFORE it performs a
'deliver ...' option.

:param option_mask: a 1D array indicating the valid options to select next
(should not be used when computing rewards, this is only
used in some downstream algorithms)

# Y pos in bound

assert pos[1] >= 0 and pos[1] < len(obs)

# X pos in bound

assert pos[0] >= 0 and pos[0] < len(obs[0])

# holding should be a value in the Holding_Obj Enum

assert holding < len(rw4t_utils.Holding_Obj)

self.obs = obs

self.pos = pos

self .holding = holding

self.option_mask = option_mask




def state_to_dict(self):
return {

' '

map': np.array(self.obs, dtype=np.int32),
'pos': np.array(self.pos, dtype=np.int32),
'holding': self.holding,

'option_mask': self.option_mask

class RW4TEnv(gym.Env):

def get_state(self):
state = RW4AT_GameState(self.map, self.agent_pos, self.agent_holding,
self.option_mask)
state_dict = state.state_to_dict()
return state_dict

Write a reward function for the following task:

The LLM receives one of the prompts below, chosen according to the reward function we want it to design. The prompt for each setting is
identical except for (1) descriptions of relevant task spaces (e.g., the flat-reward prompt omits the options space description) and (2) the
behavioral specification (“user preference”) string.

High-Level

Task description:

The task objective is to deliver all objects on the map. In the task reward, the agent gets a reward of +30 when it successfully delivers
an object, and a step cost of -1 for each time step taken. The reward function you write does not need to encode the task objective.
Relevant task spaces:

The agent’s option/subtask (referred to as HL_Action in the code) space consists of going to and delivering the two types of objects.
Each option takes multiple action steps to complete. Taking a 'go to’ option means that the agent will navigate to a supply and pick
it up. Taking a ’deliver’ option means that the agent will navigate to the delivery location and drop the object. Note that the agent
has to first go to the object to pick it up before delivering the object.

User preference:

The agent should pick up an object type that’s the same as the previously delivered object type, if there are still objects of that type
remaining in the environment. Otherwise, the agent should pick up an object of a different type.

Additional info:

You need to write a reward function to encode this user preference. The preference function you write will be used together with
the task reward to train the agent. Please make sure NOT to make the reward function stateful (i.e. you should not use function
attributes or global variables.) You should also not write any other helper functions.

Low-Level

Task description:

The task objective is to deliver all objects on the map. In the task reward, the agent gets a reward of +30 when it successfully delivers
an object, and a step cost of -1 for each time step taken. The reward function you write does not need to encode the task objective.
Relevant task spaces:

The agent’s option/subtask (referred to as HL_Action in the code) space consists of going to and delivering the two types of objects.
Each option takes multiple action steps to complete. Taking a 'go to’ option means that the agent will navigate to a supply and pick
it up. Taking a ’deliver’ option means that the agent will navigate to the delivery location and drop the object. Note that the agent
has to first go to the object to pick it up before delivering the object. The agent’s action (referred to as LL_Action in the code) space
consists of moving in the four cardinal directions, as well as atomic actions pick and drop. The agent can only perform LL_Action
"pick" if it is at the same location as the object.

User preference:

The agent should avoid yellow danger zones when it is delivering an object. However, the agent does not need to avoid danger
zones when it is going to an object.




Additional info:

You need to write a reward function to encode this user preference. The preference function you write will be used together with
the task reward to train the agent. Please make sure NOT to make the reward function stateful (i.e. you should not use function
attributes or global variables.) You should also not write any other helper functions.

Flat

Task description:

The task objective is to deliver all objects on the map. In the task reward, the agent gets a reward of +30 when it successfully delivers
an object, and a step cost of -1 for each time step taken. The reward function you write does not need to encode the task objective.
Relevant task spaces:

The agent’s action (referred to as LL_Action in the code) space consists of moving in the four cardinal directions, as well as atomic
actions pick and drop. The agent can only perform LL_Action "pick" if it is at the same location as the object.

User preference:

The agent should pick up an object type that’s the same as the previously delivered object type, if there are still objects of that type
remaining in the environment. Otherwise, the agent should pick up an object of a different type. In addition, the agent should avoid
yellow danger zones when it is delivering an object. However, the agent does not need to avoid danger zones when it is going to an
object.

Additional info:

You need to write a reward function to encode this user preference. The preference function you write will be used together with
the task reward to train the agent. Please make sure NOT to make the reward function stateful (i.e. you should not use function
attributes or global variables.) You should also not write any other helper functions.

\. J

Prompt 3: User Prompt for iTHOR

The Python environment is

Background:

1) utils:

PnP_LL_Actions = [
"MoveAhead",
"RotatelLeft",
"RotateRight"
"PickupNearestTarget",
"PutHeldOnReceptacle",

]

class PnP_HL_Actions(Enum):
pick_apple = @
pick_egg = 1
drop_apple = 2
drop_egg = 3

class PnP_HL_Actions_With_Dummy(Enum) :
pick_apple = @
pick_egg =
drop_apple
drop_egg =
dummy = 4

w I =

import random

import gymnasium as gym

import numpy as np

from gymnasium import spaces

from ai2thor.controller import Controller
from ai2thor.platform import CloudRendering
from typing import Dict, List, Optional




from HierRL.envs.ai2thor.pnp_training_utils import (PnP_HL_Actions,
PnP_HL_Actions_With_Dummy,
PnP_LL_Actions)

from HierRL.envs.ai2thor.pnp_config import avoid_stool

class ThorPickPlaceEnv(gym.Env):

Pick-and-place environment on top of AI2-THOR, using the Gymnasium API.

Episode structure:
- reset() loads a kitchen scene, curates it (move/disable/spawn a few
items), and returns an observation.
- step(a) applies either low-level nav (Move/Rotate/Look) or a simple HL
manipulation (Pickup nearest target / Put on nearest receptacle / Drop).
- reward is currently 0/1 placeholder (see _compute_reward_and_done).

metadata = {"render_modes": ["rgb_array"]}

def __init__(
self,
scene: str = "FloorPlan20", # scene id
pref_dict: Dict[str, List[int]] = avoid_stool, # preference dictionary
visibilityDistance: float = 1, # meters for "visible" flag (not reach)
grid_size: float = ©0.25, # movement step in meters
snap_to_grid: bool = True, # keep motion aligned to grid
rotate_step_degrees: int = 90, # degree per rotate action
render_depth: bool = False,
render_instance_masks: bool = False,
target_types=('Apple',

'Egg'), # categories of objects that the agent can pick
receptacle_types=("SinkBasin", ), # categories we allow "PutObject" on
max_steps: int = None,
low_level: bool = False, # whether we are working with low-level only
hl_pref_r=None,
option: PnP_HL_Actions = None,
seed: Optional[int] = None,
render: bool = True):

super().__init__Q)

# Save config

self.scene = scene

self .max_steps = max_steps

self.target_types = set(target_types)
self.receptacle_types = set(receptacle_types)
self._rng = random.Random(seed)

h, w = 600, 600
platform = None if render else CloudRendering
self.need_render = render
self.controller = Controller(
width=w,
height=h,
scene=self.scene,
gridSize=grid_size,
snapToGrid=snap_to_grid,
rotateStepDegrees=rotate_step_degrees,
renderDepthImage=render_depth,
renderInstanceSegmentation=render_instance_masks,
visibilityDistance=visibilityDistance,
platform=platform)
self.controller.step(action="Initialize", gridSize=grid_size)




# Observation: dictionary-based state space.
self.observation_space = spaces.Dict({

"apple_1_pos":

spaces.Box(-3.0, 3.0, (2, ), dtype=np.float32),
"apple_2_pos":

spaces.Box(-3.0, 3.0, (2, ), dtype=np.float32),
"egg_1_pos":

spaces.Box(-3.0, 3.0, (2, ), dtype=np.float32),
"egg_2_pos":

spaces.Box(-3.0, 3.0, (2, ), dtype=np.float32),
"stool_pos":

spaces.Box(-3.0, 3.0, (2, ), dtype=np.float32),
"sink_pos":

spaces.Box(-3.0, 3.0, (2, ), dtype=np.float32),
"agent_pos":

spaces.Box(-3.0, 3.0, (2, ), dtype=np.float32), # x and z pos
"agent_rot":

spaces.Box (0.0, 1.0, (4, ),
dtype=np.float32), # y rot (one-hot encoded)
"apple_1_state":

spaces.Discrete(3), # © = on table, 1 = held, 2 = in sink
"apple_2_state":

spaces.Discrete(3), # 0 = on table, 1 = held, 2 = in sink
"egg_1_state":

spaces.Discrete(3), # © = on table, 1 = held, 2 = in sink
"egg_2_state":

spaces.Discrete(3), # © = on table, 1 = held, 2 = in sink

H

# Whether we are working with the low-level only
self.low_level = low_level

# Adjust task/subtask horizons
if max_steps is not None:
self.max_steps = max_steps
else:
if self.low_level:
self.max_steps = 100
else:
self.max_steps = 500

# Define action spaces

self.pnp_11_actions = PnP_LL_Actions

self.pnp_hl_actions = PnP_HL_Actions
self.pnp_hl_actions_with_dummy = PnP_HL_Actions_With_Dummy

# Low level action space: iThor environment commands
self.11_action_space = spaces.Discrete(len(self.pnp_l1_actions))
self.hl_action_space = spaces.Discrete(len(self.pnp_hl_actions))

# High level action space: Options (pick up/drop specific items)
# Option values
self.option = option

# Initialize environment

self._setup_env()

if self.low_level:
if self.option is None:

self.option = random.choice(list(self.pnp_hl_actions)).value

self.action_space = self.1ll_action_space
self.reset(options={'option': self.option})

else:




# Replace option with dummy value for high level training
self.option = self.pnp_hl_actions_with_dummy.dummy.value
self.action_space = self.hl_action_space

self.reset()

self.steps = 0

# Set preferences
self.pref_dict = pref_dict

# Rewards initialization
self.hl_pref_r = hl_pref_r

self._per_step_reward = -0.01
self._obj_drop_reward = 10.0
self._obj_pick_reward = 10.0
self._wrong_obj_pick_reward = -5.0
self._dist_shaping_factor = -0.05
self._11_penalty = -1
self._11_radius = 1.5
self._hl_diversity_reward = 5.0

self.prev_option = self.pnp_hl_actions_with_dummy.dummy.value
self.c_task_reward = 0

self.c_pseudo_reward = 0

self.c_gt_hl_pref =0

self.c_gt_11_pref = 0

# Used for determining successful placement into receptacle
self._drop_success = False

self._pick_apple_success = False

self._pick_egg_success = False

Write a reward function for the following task:

The LLM receives one of the prompts below, chosen according to the reward function we want it to design. The prompt for each setting is
identical except for (1) descriptions of relevant task spaces (e.g., the flat-reward prompt omits the options space description) and (2) the
behavioral specification (“user preference”) string.

High-Level

Task description:

The task objective is to pick up all apples and eggs on the dining table and place them in the sink. In the task reward, the agent gets
areward of +10 after it successfully picks up an object and places it in the sink, and a step cost of -0.1 for each time step taken. The
reward function you write does not need to encode the task objective.

Relevant task spaces:

The agent’s option/subtask (referred to as self.pnp_hl actions in the code) space consists of picking up and placing the two types of
objects. Each option takes multiple action steps to complete. Taking a ’pick’ option means that the agent will navigate to an object
and pick it up. Taking a ’place’ option means that the agent will navigate to the delivery location and place the object there. Note
that the agent has to first go to the object to pick it up before placing the object.

User preference:

The agent should pick up an object type that’s different from the previously placed object type, as long as there are objects of the
other type on the table need to be picked.

Additional info:

You need to write a reward function to encode this user preference. The preference function you write will be used together with the
task reward to train the agent. It can take up to 30 steps to reach an object and pick it up, or to reach the sink and drop it off. Make
sure your reward scaling gives the preference for alternating objects much more weight than the negative step rewards, but still
lower than the positive task reward. Please make sure NOT to make the reward function stateful (i.e. you should not use function
attributes or global variables). You should also not write any other helper functions.




Low-Level

Task description:

The task objective is to pick up all apples and eggs on the dining table and place them in the sink. In the task reward, the agent gets
a reward of +10 after it successfully picks up an object and places it in the sink, and a step cost of -0.1 for each time step taken. The
reward function you write does not need to encode the task objective.

Relevant task spaces:

The agent’s option/subtask (referred to as self.pnp_hl actions in the code) space consists of picking up and placing the two types of
objects. Each option takes multiple action steps to complete. Taking a ’pick’ option means that the agent will navigate to an object
and pick it up. Taking a ’place’ option means that the agent will navigate to the delivery location and place the object there. Note
that the agent has to first go to the object to pick it up before placing the object. The agent’s action (referred to as self.pnp_Il_actions
in the code) space consists of the primitives for: moving forward, rotating left, rotating right, picking up the closest object, and
placing a held object in receptacle. The agent can only perform the low level pick or place primitive only if the agent is close enough
to an object or a receptacle.

User preference:

The agent should avoid the stool in the environment both when it is on its way to pick up an egg and place an egg down. More
specifically, the agent should be penalized when it is within 1.5 meters of the stool. However, the agent does not need to avoid the
stool when it is on its way to pick up an apple or place an apple down.

Additional info:

You need to write a reward function to encode this user preference. The preference function you write will be used together with
the task reward to train the agent. Please make sure NOT to make the reward function stateful (i.e. you should not use function
attributes or global variables). You should also not write any other helper functions.

Flat

Task description:

The task objective is to pick up all apples and eggs on the dining table and place them in the sink. In the task reward, the agent gets
areward of +10 after it successfully picks up an object and places it in the sink, and a step cost of -0.1 for each time step taken. The
reward function you write does not need to encode the task objective.

Relevant task spaces:

The agent’s action (referred to as self.pnp_ll_actions in the code) space consists of the primitives for: moving forward, rotating left,
rotating right, picking up the closest object, and placing a held object in receptacle. The agent can only perform the low level pick
or place primitive only if the agent is close enough to an object or a receptacle.

User preference:

The agent should avoid the stool in the environment both when it is on its way to pick up an egg and place an egg down. More
specifically, the agent should be penalized when it is within 1.5 meters of the stool. However, the agent does not need to avoid the
stool when it is on its way to pick up an apple or place an apple down. In addition, the agent should pick up an object type that’s
different from the previously placed object type, as long as there are objects of the other type on the table need to be picked.
Additional info:

You need to write a reward function to encode this user preference. The preference function you write will be used together with the
task reward to train the agent. It can take up to 30 steps to reach an object and pick it up, or to reach the sink and drop it off. Make
sure your reward scaling gives the preference for alternating objects much more weight than the negative step rewards, but still
lower than the positive task reward. Please make sure NOT to make the reward function stateful (i.e. you should not use function
attributes or global variables.) You should also not write any other helper functions.

. J

Prompt 4: User Prompt for Kitchen

The Python environment is

(N

Background:
1) Ingredients:
class Ingredients(Enum):

empty = @
tomato = 1
onion = 2

lettuce = 3




2) Salad types:
class SoupType(Enum):
no_soup = @

alice =1
bob = 2

cathy = 3
david = 4

3) All available options:
{'Chop Tomato': @, 'Chop Lettuce': 1, 'Chop Onion': 2,
'Prepare David Ingredients': 3, 'Plate David Salad': 4}

4) All available actions:

{0: (o, -1),
1: (0, 1),
2: (1, 9),
3: (-1, 9),
4: (0, 0)}

If the agent is standing next to a counter, performing an action in the
direction of the counter interacts with the counter.

For example, if the agent is standing under a counter, performing action @
(goes up) interacts with the counter above the agent.

import gymnasium as gym

class OvercookedSimple(gym.Env):

def get_plain_state(self, raw_info):
The output of this function will be the input state in the generated reward
function.

The state is a dictionary that maps object names to their locations on the
map.

If the object 'obj' is at location (x, y), then state['obj'I[y, x] == 1.
Otherwise, state['obj']Ily, x] == 0.

num_rows = self.world_size[1]

num_cols = self.world_size[0]

state_dict = {}

# Process Grid Squares Map
GRIDSQUARES = [
"Floor", "Counter", "Cutboard", "Bin", "Pot", "FreshTomatoTile",
"FreshOnionTile", "FreshLettuceTile", "PlateTile"
]
gridsquares_map = raw_info[ 'gridsquare']
for gridsquare_type in GRIDSQUARES:
grid_map = gridsquares_map[gridsquare_typel.T
assert grid_map.shape == (num_rows, num_cols)
state_dict[gridsquare_type] = grid_map

# Process Object Map
OBJECTS = ['FreshTomato', 'FreshLettuce', 'FreshOnion'] + [
'ChoppingTomato', 'ChoppingOnion', 'ChoppinglLettuce’
1 + ['ChoppedTomato', 'ChoppedOnion', 'ChoppedlLettuce'] + ['Plate']
objects_map = raw_info[ 'objects']
for obj_type in OBJECTS:
obj_map = objects_map[obj_typel.T




assert obj_map.shape == (num_rows, num_cols)
state_dict[obj_type]l = obj_map

# Process Agent Map

agent_map = raw_info['agent_map']['agent-1'1.T
assert agent_map.shape == (num_rows, num_cols)
state_dict['agent'] = agent_map

return state_dict
Write a reward function for the following task:

The LLM receives one of the prompts below, chosen according to the reward function we want it to design. The prompt for each setting is
identical except for (1) descriptions of relevant task spaces (e.g., the flat-reward prompt omits the options space description) and (2) the
behavioral specification (“user preference”) string.

High-Level

Task description:

The task objective is to prepare one David’s salad with three ingredients: onion, lettuce, and tomatoes. To make this salad, the agent
needs to: a. Chop ingredients (onion, lettuce, and tomatoes). Only one ingredient of each type is needed to complete the salad. b.
Combined chopped ingredients. c. Plate the salad. The task reward already encodes the task objective. In the task rewrd, the agent
receives a reward of +1 when it completes a salad, and a step cost of -0.01 for each time step taken. The reward function you write
does not need to encode the task objective.

Relevant task spaces:

The agent’s option (subtask) space consists of macro cooking actions, such as ’Chop Onion’ and ’Plate David Salad’. Each option
takes multiple action steps to complete.

User preference:

The agent should chop an onion after it chops a tomato, and the agent should chop a lettuce after it chops an onion. If the ingredients
are already chopped or a combined salad already exists, the agent should not chop more ingredients. The mixing order of the
ingredients does not matter.

Additional info:

You need to write a reward function to encode this user preference. The preference function you write will be used together with
the task reward to train the agent. Please make sure NOT to make the reward function stateful (i.e. you should not use function
attributes or global variables.) You should also not write any other helper functions.

Flat

Task description:

The task objective is to prepare one David’s salad with three ingredients: onion, lettuce, and tomatoes. To make this salad, the agent
needs to: a. Chop ingredients (onion, lettuce, and tomatoes). Only one ingredient of each type is needed to complete the salad. b.
Combined chopped ingredients. c. Plate the salad. The task reward already encodes the task objective. In the task reward, the agent
receives a reward of +1 when it completes a salad, and a step cost of -0.01 for each time step taken. The reward function you write
does not need to encode the task objective.

Relevant task spaces:

The agent’s action (low-level action) space consists of moving in the four cardinal directions (up, down, left, right) and idle. When
an agent is standing next to a counter, performing an action in the direction of the counter interacts with the counter.

User preference:

The agent should chop an onion after it chops a tomato, and the agent should chop a lettuce after it chops an onion. If the ingredients
are already chopped or a combined salad already exists, the agent should not chop more ingredients. The mixing order of the
ingredients does not matter.

Additional info:

You need to write a reward function to encode this user preference. The preference function you write will be used together with
the task reward to train the agent. Please make sure NOT to make the reward function stateful (i.e. you should not use function
attributes or global variables.) You should also not write any other helper functions.




D.5 Example LLM-Generated Rewards

Here, we provide examples of high-level, low-level, and flat rewards generated using the prompts from the previous section.

D.5.1 Rescue World

Example Flat Preference Reward for Rescue World

def get_flat_sa_pref_gpt(state: Dict, action: int) -> Tuple[float, Dict[str, float]]:
state: the current state of the environment.
action: the (low-level) action that the agent is about to perform in the current state.
current_pos = state['pos']
current_map = state['map']
current_holding = state['holding']
recently_delivered = -1 # To be inferred from context; assuming function is aware of last delivery
reward = 0.0
reward_components = {
'consistency_bonus': 0.0,
'danger_zone_penalty': 0.0

# Reward consistency in type picking
if action == rw4t_utils.RWAT_LL_Actions.pick.value:
# Get the object type at current position
object_type = current_map[current_pos[1], current_pos[0]]

# Check if the object type is the same as the recently delivered one
if object_type == recently_delivered:
reward += 1.0 # Encourage same type pick
reward_components['consistency_bonus'] += 1.0

# Penalize entering yellow zones when holding an object
if current_holding != rw4t_utils.Holding_Obj.empty.value:
# Calculate the next position based on the action taken
next_pos = current_pos.copy()
if action == rw4t_utils.RW4T_LL_Actions.go_up.value:
next_pos[1] -= 1
elif action == rw4t_utils.RW4T_LL_Actions.go_down.value:
next_pos[1] += 1
elif action == rw4t_utils.RWAT_LL_Actions.go_left.value:
next_pos[0] -= 1
elif action == rw4t_utils.RWAT_LL_Actions.go_right.value:
next_pos[0] += 1

# Ensure the next position is within bounds
if (0 <= next_pos[0] < current_map.shape[1]) and (@ <= next_pos[1] < current_map.shape[0]):
next_area_type = current_map[next_pos[1], next_pos[0]]

if next_area_type == rw4t_utils.RW4T_State.yellow_zone.value:
reward -= 1.0 # Penalize for entering a danger zone
reward_components[ 'danger_zone_penalty'] -= 1.0

return reward, reward_components

Example Low-Level Preference Reward for Rescue World

def get_low_level _pref_gpt(state: Dict, option: int, action: int) -> Tuple[float, Dict[str, float]]:

state: the current state of the environment.
option: the option (subtask) selected by the agent in the current state.




action: the action that the agent is about to perform in the current state.

reward = 0.0
reward_components = {}

# Extract necessary information from the state
agent_pos = state['pos']

map_state = state['map']

current_cell = map_state[agent_pos[1], agent_pos[0]]

# Check if the agent is in a danger zone (yellow zone)
is_in_yellow_zone = current_cell == rw4t_utils.RW4T_State.yellow_zone.value

# Determine if the current option is a delivery option
is_delivery_option = option in [
rw4t_utils . RWAT_HL_Actions_EZ.deliver_circle.value,
rw4t_utils.RWAT_HL_Actions_EZ.deliver_square.value

# Apply a penalty if the agent is delivering and currently in a yellow zone
if is_delivery_option and is_in_yellow_zone:

danger_zone_penalty = -5.0 # User defined penalty

reward += danger_zone_penalty

reward_components[ 'danger_zone_penalty'] = danger_zone_penalty
else:

reward_components[ 'danger_zone_penalty'] = 0.0

# No additional reward for being outside danger zones
return reward, reward_components

Example High-level Preference Reward for Rescue World

def get_high_level_pref_gpt(state: Dict, prev_option: int, option: int) -> Tuple[float, Dict[str, float]]:
state: the current state of the environment.
prev_option: the last option (subtask) executed by the agent to reach the current state.
option: the option (subtask) the agent is about to perform in the current state.

reward = 0.0
reward_components = {}

# Determine the type of the previous and current option
prev_pick_type = None
curr_pick_type = None

if prev_option == rw4t_utils.RWAT_HL_Actions_EZ.deliver_circle.value:
prev_pick_type = rw4t_utils.RW4T_State.circle.value
elif prev_option == rw4t_utils.RW4T_HL_Actions_EZ.deliver_square.value:

prev_pick_type = rw4t_utils.RWAT_State.square.value

if option == rw4t_utils.RW4T_HL_Actions_EZ.go_to_circle.value:
curr_pick_type = rw4t_utils.RW4T_State.circle.value

elif option == rw4t_utils.RWAT_HL_Actions_EZ.go_to_square.value:
curr_pick_type = rw4t_utils.RW4T_State.square.value

# Count remaining objects of each type on the map
circle_count = (state['map'] == rw4t_utils.RW4T_State.circle.value).sum()
square_count = (state['map'] == rw4t_utils.RW4T_State.square.value).sum()




# Add preference reward based on the user preference
if prev_pick_type is not None:
if curr_pick_type == prev_pick_type:
if (curr_pick_type == rw4t_utils.RW4T_State.circle.value and circle_count > 0) or \
(curr_pick_type == rw4t_utils.RW4AT_State.square.value and square_count > 0):
reward += 5.0 # Reward for picking the same type if available
reward_components['same_type_pick_bonus'] = 5.0
else:
reward_components['same_type_pick_bonus'] = 0.0
else:
reward_components['same_type_pick_bonus'] = 0.0

return reward, reward_components

D.5.2 iTHOR

Example Flat Preference Reward for iTHOR

def get_flat_sa_pref_gpt(state: Dict, action: int) -> Tuple[float, Dict[str, float]]:
Computes the user preference reward based on agent's proximity to the stool
and preferences for alternating object types during the pickup/drop process.

state: the current state of the environment.
action: the current action the agent is performing.
reward = 0.0
reward_components = {

'stool_penalty': 0.0,

'alternating_bonus': 0.0

# Agent and stool position
agent_pos = state['agent_pos']
stool_pos = state['stool_pos']

# Calculate distance to stool
distance_to_stool = np.linalg.norm(np.array(agent_pos) - np.array(stool_pos))

# If the agent is close to the stool while dealing with eggs, apply penalty
dealing_with_eggs = (state['egg_1_state'] in [0, 1] or state['egg_2_state'] in [0, 1])
if dealing_with_eggs and distance_to_stool < 1.5:
reward -= 2.0 # Penalize for being too close to the stool
reward_components['stool_penalty'] = -2.0

# Check if the action is a pickup or drop intention

if action in [PnP_LL_Actions.index("PickupNearestTarget"), PnP_LL_Actions.index("PutHeldOnReceptacle")]:
# Determine last placed object type to encourage alternating pick-up
last_picked = 'apple' if (state['apple_1_state'] == 2 or state['apple_2_state'] == 2) else 'egg'
available_apples = (state['apple_1_state'] == 0 or state['apple_2_state'] == 0)
available_eggs = (state['egg_1_state'] == 0 or state['egg_2_state'] == 0)

if last_picked == 'apple' and available_eggs:
reward += 5.0 # Encourage picking eggs if last placed was apple
reward_components['alternating_bonus'] = 5.0

elif last_picked == 'egg' and available_apples:
reward += 5.0 # Encourage picking apples if last placed was egg
reward_components['alternating_bonus'] = 5.0

return reward, reward_components




Example Low-Level Preference Reward for iTHOR

def get_low_level_pref_gpt(state: Dict, option: int, action: int) -> Tuple[float, Dict[str, float]]:
state: the current state of the environment.
option: the option (subtask) selected by the agent in the current state.
action: the action that the agent is about to perform in the current state.

# Define rewards and thresholds
stool_penalty = -2.0 # Penalty for being too close to the stool
stool_avoidance_radius = 1.5 # Distance within which to penalize for being too close to the stool

# Initialize preference reward and its components
reward = 0.0
reward_components = {"stool_avoidance_penalty": 0.0}

# Get stool and agent positions
stool_pos = np.array(state["stool_pos"])
agent_pos = np.array(state["agent_pos"])

# Calculate distance between agent and stool
dist_to_stool = np.linalg.norm(agent_pos - stool_pos)

# Determine if the current option involves interacting with eggs
interacting_with_egg = option in {PnP_HL_Actions.pick_egg.value, PnP_HL_Actions.drop_egg.value}

# Apply penalty if the agent is too close to the stool and dealing with eggs
if interacting_with_egg and dist_to_stool < stool_avoidance_radius:

reward += stool_penalty

reward_components["stool_avoidance_penalty"] = stool_penalty

return reward, reward_components

Example High-level Preference Reward for iTHOR

def get_high_level_pref_gpt(state: Dict, prev_option: int, option: int) -> Tuple[float, Dict[str, float]]:
# Initialize reward and components
preference_reward = 0.0
reward_components = {
"alternation_bonus": 0.0,
"not_alternate_penalty": 0.0

# Determine the type of object just placed and the type to pick

if prev_option == PnP_HL_Actions.drop_apple.value:
last_placed_type = "apple"

elif prev_option == PnP_HL_Actions.drop_egg.value:
last_placed_type = "egg"

else:
last_placed_type = None

if option == PnP_HL_Actions.pick_apple.value:
current_pick_type = "apple"

elif option == PnP_HL_Actions.pick_egg.value:
current_pick_type = "egg"

else:
current_pick_type = None

# Check items state to determine if alternation is possible
remaining_apples = state["apple_1_state"] == 0 or state["apple_2_state"] == 0
remaining_eggs = state["egg_1_state"] == 0 or state["egg_2_state"] == 0




# Encourage alternating picking
if last_placed_type and current_pick_type:
if last_placed_type != current_pick_type:
# Give a bonus for alternating types
preference_reward += 8.0 # Scaled to be significant but less than the task completion reward
reward_components["alternation_bonus"] = 8.0
elif (current_pick_type == "apple" and remaining_eggs) or (current_pick_type == "egg" and remaining_apples):
# Apply a penalty if not alternating but possible
preference_reward += -2.0
reward_components["not_alternate_penalty"] = -2.0

return preference_reward, reward_components

D.5.3 Kitchen

Example Flat Preference Reward for Kitchen

def get_flat_sa_pref_gpt(state: Dict, action: int) -> Tuple[float, Dict[str, float]]:
state: the current state of the environment.
action: the (low-level) action that the agent is about to perform in the current state.
# Define a map for action directions
action_effect_map = {

0: (0, -1), # move up

1: (o, 1), # move down
2: (1, 0), # move right
3: (-1, 0), # move left
4: (0, 9) # idle

reward = 0.0

reward_components = {
'tomato_chopped': 0.0,
'onion_chopped': 0.0,
'lettuce_chopped': 0.0

# Check positions of chopped ingredients
chopped_tomato_exists = state['ChoppedTomato'].any()
chopped_onion_exists = state['ChoppedOnion'].any()
chopped_lettuce_exists = state['ChoppedLettuce'].any()

# Calculate agent's new position based on the action
agent_pos = state['agent'].argmax()

agent_y, agent_x = divmod(agent_pos, state['agent'].shape[1])
dy, dx = action_effect_map[action]

new_pos = (agent_y + dy, agent_x + dx)

# Check if the agent is chopping at the new position

is_near_cutboard = state['Cutboard'][new_pos] == 1

chopping_tomato_active = is_near_cutboard and state['ChoppingTomato'][new_pos] ==
chopping_onion_active = is_near_cutboard and state['ChoppingOnion'][new_pos] ==
chopping_lettuce_active = is_near_cutboard and state['ChoppinglLettuce'][new_pos] == 1

# Add preference rewards

if chopping_tomato_active and not chopped_tomato_exists:
reward_components['tomato_chopped'] += 0.1 # Encourage chopping tomato

if chopped_tomato_exists and chopping_onion_active and not chopped_onion_exists:
reward_components['onion_chopped'] += 0.2 # Encourage chopping onion after chopping tomato




if chopped_onion_exists and chopping_lettuce_active and not chopped_lettuce_exists:
reward_components['lettuce_chopped'] += @.3 # Encourage chopping lettuce after chopping onion

reward = sum(reward_components.values())

return reward, reward_components

Example High-level Preference Reward for Kitchen

def get_high_level_pref_gpt(state: Dict, prev_option: int, option: int) -> Tuple[float, Dict[str, float]]:
state: the current state of the environment.
prev_option: the last option (subtask) executed by the agent to reach the current state.
option: the option (subtask) the agent is about to perform in the current state.

reward = 0.0

reward_components = {
"onion_after_tomato": 0.0,
"lettuce_after_onion": 0.0,
"avoid_extra_chop": 0.0,

}

# Define option indices for ease of reference
CHOP_TOMATO = 0@
CHOP_LETTUCE = 1

CHOP_ONION = 2

# Check for chopped states

tomato_chopped = state['ChoppedTomato'].any()
onion_chopped = state['ChoppedOnion'].any()
lettuce_chopped = state['ChoppedLettuce'].any()

# User preferences

if prev_option == CHOP_TOMATO and option == CHOP_ONION:
reward += 0.5
reward_components["onion_after_tomato"] = 0.5

if prev_option == CHOP_ONION and option == CHOP_LETTUCE:
reward += 0.5
reward_components["lettuce_after_onion"] = 0.5

# Avoid chopping ingredients again if they are already chopped
if (option == CHOP_TOMATO and tomato_chopped) or \

(option == CHOP_ONION and onion_chopped) or \

(option == CHOP_LETTUCE and lettuce_chopped):

reward -= 1.0

reward_components["avoid_extra_chop"] = -1.0

return reward, reward_components

E User Study Details

E.1 Experiment Protocol

We conducted a user study to evaluate how well agent policies trained with hierarchical rewards (experimental group) generated by language
models are perceived to align with given behavioral specifications compared to those trained with flat rewards (control group), also generated
using language models. Each participant was randomly assigned to either the Rescue World or Kitchen domain.

(1) Consent and Study Overview. Participants were first presented with a detailed overview of the study, including its purpose, procedures,
and any potential risks. An IRB-approved consent form was provided, and participants were required to give informed consent before
proceeding.



(2) Demographic Questionnaire. After providing consent, participants completed a brief demographic questionnaire, where we asked for
their age and sex.
(3) Domain Introduction. Participants were introduced to the assigned domain through textual descriptions accompanied by screenshots.
This step was designed to ensure that they had sufficient context to understand the environment and the tasks performed by the agent.
(4) Presentation of Behavioral Specifications and Attention Checks. Next, participants were shown the behavioral specifications the
agent was expected to follow. To ensure they carefully read these specifications, we included attention check questions. For example, in
the Rescue World domain, where the agent must handle two object types (food and medical kits) and may encounter avoid danger zones
(marked by yellow grids), part of the safety specification states that the robot should “avoid yellow danger zones when it is delivering an
object”. We asked participants, whether according to the specifications, it would be considered safe for the robot to “go through danger
zones while delivering food”. While participants were not required to answer these questions correctly to proceed, we filtered out all
responses with incorrect answers during data analysis to ensure data quality.
(5) Video Evaluation. To ensure consistent evaluation, only policies that successfully completed the task were shown. Additionally, to
control for variability, all videos shown to a participant were drawn from policies trained with the same random seed, although they could
originate from different reward candidates. In the Rescue World domain, each participant viewed 6 videos: 3 showing policies trained
with flat rewards 774, and 3 showing policies trained with hierarchical rewards (7y, 7). In the Kitchen domain, participants viewed 4
videos: 2 per reward method. Fewer videos were shown in this domain because, in some cases, only 2 out of 8 flat reward candidates
produced policies capable of successfully completing the task. Questions for each video appeared on the same page, and participants
were allowed to replay the videos as many times as they wished. After each video, participants first answered a multiple-choice question
to verify they had watched the video (e.g., “What order did the robot deliver the objects in?”). They were then asked to rate how well
the agent’s behavior aligned with the specified behaviors using a 5-point scale, with 1 indicating “least aligned” and 5 indicating “most
aligned”. Participants could optionally provide any comments explaining their ratings.
Final Feedback and Compensation. At the end of the study, participants were invited to leave any additional feedback about their
experience. On average, participants took 14.2 minutes to complete the study (SD = 8.7 minutes). All participants who completed the full
study were compensated $3 for their time.
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E.2 Participants

We conducted the user study on Prolific, recruiting a total of 40 participants from the United States. After applying attention check filters,
we obtained usable data from 30 participants, with 15 participants assigned to each domain. Among these 30 participants, the youngest was
20, the oldest was 67, and the median age was 35. The sex distribution was fairly balanced, with 14 female participants, 15 male participants,
and 1 participant identifying as “non-binary / third gender”

E.3 Data Analysis

We filtered out data from participants who incorrectly answered the attention check questions about the behavioral specifications. For
participants who passed the attention checks, if they answered a video content question incorrectly, we excluded their ratings for that
specific video but retained their responses for other videos.

To generate Fig. 7, we computed the average rating each participant assigned to Flat and Hier policies, and then aggregated these
per-participant means to report group-level comparisons. Since each participant evaluated both Flat and Hier policies trained with the
same random seed, we used the Wilcoxon Signed-Rank test to assess the statistical significance of the observed rating differences [23]. All
reported results are based on the filtered dataset, with the final sample sizes specified in the Participants section.

F Code Availability and Release

An anonymized folder containing the source code developed for this project is available at https://anonymous.4open.science/r/hierarchical
reward_design-88B3/.


https://anonymous.4open.science/r/hierarchical_reward_design-88B3/
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